
SFLASH, a fast asymmetric signature

scheme for low-cost smartcards

Primitive specification and supporting

documentation

Nicolas Courtois, Louis Goubin, Jacques Patarin

CP8 Crypto Lab, SchlumbergerSema, 36-38 rue de la Princesse,
BP 45, 78430 Louveciennes Cedex, France

courtois@minrank.org, LGoubin@slb.com, JPatarin@slb.com

Note: This document specifies the updated final version of the SFLASH signature
scheme, slightly modified as allowed in the second stage of Nessie evaluation process,
in order to improve the speed and the security. This is therefore the only official ver-
sion of SFLASH. In some papers that refer to the old version, it is sometimes called
SFLASHv1, and SFLASHv2 is the new version. In the appendix of the present docu-
ment we summarize all the changes in SFLASH, for readers and developers that are
acquainted with the previous version.

1 Introduction

In the present document, we describe the SFLASH public key signature scheme.
SFLASH is a C∗−− algorithm (see [2]) with a special choice of the parameters.

SFLASH belongs to the family of “multivariate” public key schemes, i.e. each signature
and each hash of the messages to sign are represented by some elements of a small finite
field K.

SFLASH is designed to be a very fast signature scheme, both for signature genera-
tion and signature verification. It is much faster in signature than RSA and much esier
to implement on smartcards without any arithmetic coprocessor for example. However
its public key size is larger than the public key size of RSA. Nevertheless this public
key size can fit in current smartcards. It may also be noticed that, with the secret key,
it is possible to sign AND to check the signature (generated with this particular secret
key) without the need of the public key (in some applications this may be useful).

As a result, the parameters of SFLASH have been chosen in order to satisfy an
extreme property that no other standardized public key scheme has reached so far:
efficiency on low-price smartcards. SFLASH has been specially designed for very specific
applications because we thought that for all the classical applications of signature
schemes, the classical algorithms (RSA, Fiat-Shamir, Elliptic Curves, DSA, etc) are
very nice, but when we need some very specific properties these algorithms just can
not satisfy them, and it creates a real practical need for algorithms such as SFLASH.

SFLASH was designed to have a security level of 280 with the present state of the
art in Cryptanalysis, as required in the NESSIE project.

1

2 Notations

In all the present document, || will denote the “concatenation” operation. More pre-
cisely, if λ = (λ0, . . . , λm) and µ = (µ0, . . . , µn) are two strings of elements (in a given
field), then λ||µ denotes the string of elements (in the given field) defined by:

λ||µ = (λ0, . . . , λm, µ0, . . . , µn).

For a given string λ = (λ0, . . . , λm) of bits and two integers r, s, such that 0 ≤ r ≤
s ≤ m, we denote by [λ]r→s the string of bits defined by:

[λ]r→s = (λr, λr+1, . . . , λs−1, λs).

3 Parameters of the algorithm

The SFLASH algorithm uses three finite fields.

• The first one, K = F128 is precisely defined as K = F2[X]/(X7 + X + 1). We
will denote by π the bijection between {0, 1}7 and K defined by:

∀b = (b0, . . . , b6) ∈ {0, 1}7, π(b) = b6X
6 + . . . + b1X + b0 (mod X7 + X + 1).

• The second one is L = K[X]/(X37 + X12 + X10 + X2 + 1). We will denote by ϕ
the bijection between K37 and L defined by:

∀ω = (ω0, . . . , ω36) ∈ K37, ϕ(ω) = ω36X
36+. . .+ω1X+ω0 (mod X37 + X12 + X10 + X2 + 1).

3.1 Secret Parameters

1. An affine secret bijection s from K37 to K37. Equivalently, this parameter can
be described by the 37× 37 square matrix and the 37× 1 column matrix over K
of the transformation s with respect to the canonical basis of K37. We denote by
SL the square matrix (“L” means “linear”) and SC the column matrix (here “C”
means “constant”).

2. An affine secret bijection t from K37 to K37. Equivalently, this parameter can be
described by the 37× 37 square matrix and the 37× 1 column matrix over K of
the transformation s with respect to the canonical basis of K37. We denote by
SL the square matrix (“L” means “linear”) and SC the column matrix (here “C”
means “constant”).

3. A 80-bit secret string denoted by ∆.

3.2 Public Parameters

The public key consists in the function G from K37 to K26 defined by:

G(X) =
[
t
(
ϕ−1

(
F (ϕ(s(X)))

))]
0→181

.

Here F is the function from L to L defined by:

∀A ∈ L, F (A) = A12811+1.

2

By construction of the algorithm, G is a quadratic transformation over K, i.e.
(Y0, . . . , Y25) = G(X0, . . . , X36) can be written, equivalently:

Y0 = P0(X0, . . . , X36)
...

Y25 = P25(X0, . . . , X36)

with each Pi being a quadratic polynomial of the form

Pi(X0, . . . , X36) =
∑

0≤j<k<37

ζi,j,kXjXk +
∑

0≤j<37

νi,jXj + ρi,

all the elements ζi,j,k, νi,j and ρi being in K.

4 Generation of the key

In the SFLASH scheme, the public is deduced from the secret key, as explained in
section 3.2. We need only to describe how the secret key is generated. As described in
section 3.1, the following secret elements have to be generated:

• The secret invertible 37 × 37 matrix SL, and the secret 37 × 1 (column) matrix
SC , all the coefficients being in K.

• The secret invertible 37 × 37 matrix TL, and the secret 37 × 1 (column) matrix
TC , all the coefficients being in K.

• The 80-bit secret string ∆.

Note that, through the π transformation, generating an element of K is equivalent to
generating a 7-bit string. In what follows, we call

next_7bit_random_string

the string of 7 bits obtained by calling 7 times the CSPRBG (we obtain first the first
bit of the string, then the second bit, ..., until the seventh bit).
To generate all these parameters, we apply the following method, which uses a crypto-
graphically secure pseudorandom bit generator (CSPRBG). From a seed whose entropy
is at least 80 bits, this CSPRBG is supposed to produce a new random bit each time
it is asked to.

1. To generate the invertible 37× 37 matrix SL, two methods can be used:

First Method (“Trial and error”): Generate the matrix SL by repeating

for i=0 to 36
for j=0 to 36
S_L[i,j]=pi(next_7bit_random_string)

until we obtain an invertible matrix.

3

Second Method (with the LU decomposition): Generate a lower trian-
gular 37 × 37 matrix LS and an upper triangular 37 × 37 matrix US , all the
coefficients being in K, as follows:

for i=0 to 36
for j=0 to 36
{
if (i<j) then {U_S[i,j]=pi(next_7bit_random_string); L_S[i,j]=0}
if (i>j) then {L_S[i,j]=pi(next_7bit_random_string); U_S[i,j]=0}
if (i=j) then {repeat (z=next_7bit_random_string) until z!=(0,0,0,0,0,0,0)

U_S[i,j]=pi(z); L_S[i,j]=1}
}

Define then SL = LS × US .

2. Generate SC by using the CSPRBG to obtain 37 new random elements of K
(from the top to the bottom of the column matrix). Each of these elements of K
is obtained by

pi(next_7bit_random_string)

3. To generate the invertible 37× 37 matrix SL, two methods can be used:

First Method (“Trial and error”): Generate the matrix TL by repeating

for i=0 to 36
for j=0 to 36
T_L[i,j]=pi(next_7bit_random_string)

until we obtain an invertible matrix.

Second Method (with the LU decomposition): Generate a lower trian-
gular 37 × 37 matrix LT and an upper triangular 37 × 37 matrix UT , all the
coefficients being in K, as follows:

for i=0 to 36
for j=0 to 36
{
if (i<j) then {U_T[i,j]=pi(next_7bit_random_string); L_T[i,j]=0}
if (i>j) then {L_T[i,j]=pi(next_7bit_random_string); U_T[i,j]=0}
if (i=j) then {repeat (z=next_7bit_random_string) until z!=(0,0,0,0,0,0,0)

U_T[i,j]=pi(z); L_T[i,j]=1}
}

Define then TL = LT × UT .

4. Generate TC by using the CSPRBG to obtain 37 new random random elements
of K (from the top to the bottom of the column matrix). Each of these elements
of K is obtained by

pi(next_7bit_random_string)

5. Finally, generate ∆ by using the CSPRBG to obtain 80 random bits.

Note that the generation of a complete secret key thus requires 20282 bits from the
CSPRBG (with the second method).

4

5 Signing a message

In the present section, we describe the signature of a message M by the SFLASH
algorithm.

5.1 The signing algorithm

The message M is given by a string of bits. Its signature S is obtained by applying
successively the following operations (see figure 1):

1. Let M1 and M2 be the three 160-bit strings defined by:

M1 = SHA-1(M),

M2 = SHA-1(M1).

2. Let V be the 182-bit string defined by:

V = [M1]0→159||[M2]0→21.

3. Let W be the 77-bit string defined by:

W = [SHA-1(V ||∆)]0→76.

4. Let Y be the string of 26 elements of K defined by:

Y =
(
π([V]0→6), π([V]7→13), . . . , π([V]175→181)

)
.

5. Let R be the string of 11 elements of K defined by:

R =
(
π([W]0→6), π([W]7→13), . . . , π([W]70→76)

)
.

6. Let B be the element of L defined by:

B = ϕ
(
t−1(Y ||R)

)
.

7. Let A be the element of L defined by:

A = F−1(B),

F being the function from L to L defined by:

∀A ∈ L, F (A) = A12811+1.

8. Let X = (X0, . . . , X36) be the string of 37 elements of K defined by:

X = (X0, . . . , X36) = s−1
(
ϕ−1(A)

)
.

9. The signature S is the 259-bit string given by:

S = π−1(X0)|| . . . ||π−1(X36).

5

?

?

?

? ?

-

-
?

? ?

Signature S

A

B

Y ||R

R

Y

Message M

SHA-1 SHA-1

SHA-1(·||∆)

F−1

160 bits 160 bits

160 bits

s−1

t−1

Figure 1: Signature generation with SFLASH

6

5.2 Computing A = F−1(B)

The function F , from L to L, is defined by:

∀A ∈ L, F (A) = A12811+1.

As a consequence, A = F−1(B) can be obtained by the following formula:

A = Bh,

the value of the exponent h being the inverse of 12811 + 1 modulo 12837 − 1. In fact,
h can be explicitly given by:

h = 2258 +
17∑

i=0

154i+152∑
j=154i+76

2j .

Three methods can be used to compute A = Bh :

1. Directly compute the exponentiation Bh by using the “square-and-multiply” prin-
ciple.

2. Use the following algorithm:

(a) Initialize A to:
A = B276

(
= B12810

·B64
)
.

Note that B 7→ B12810
is a linear transformation of L if we consider L as a

vector space over K and can thus be easily computed.

(b) Compute
u = A12811−1.

This value can be computed either by using the “square-and-multiply” prin-
ciple or by noticing that we also have

u ·A = A12811

with A 7→ A12811
being a linear transformation of L if we consider L as a

vector space over K. We can thus easily find A by solving a system of linear
equations over K.

(c) Apply 18 times the following transformation: replace A by u ·A12822
. This is

also practical, since A 7→ A12822
is a linear transformation of L (considered

as a vector space over K).

3. Finally, we can also use the fact that

A ·B12811
= A12822

·B.

Since B 7→ B12811
and A 7→ A12822

are two linear transformations of L (considered
as a vector space over K), A can be found by solving a system of linear equations
over K.

7

6 Verifying a signature

Given a message M (i.e. a string of bits) and a signature S (a 259-bit string), the
following algorithm is used to decide whether S is a valid signature of M or not:

1. Let M1 and M2 be the three 160-bit strings defined by:

M1 = SHA-1(M),

M2 = SHA-1(M1).

2. Let V be the 182-bit string defined by:

V = [M1]0→159||[M2]0→21.

3. Let Y be the string of 26 elements of K defined by:

Y =
(
π([V]0→6), π([V]7→13), . . . , π([V]175→181)

)
.

4. Let Y ′ be the string of 26 elements of K defined by:

Y ′ = G
(
π([S]0→6), π([S]7→13), . . . , π([S]252→258)

)
.

5. • If Y equals Y ′, accept the signature.

• Else reject the signature.

? ?

-
-

?

?

Signature S

G

Y

Y ′

Message M

SHA-1 SHA-1

160 bits 160 bits

Y = Y ′: accepted
Y 6= Y ′: rejected

Figure 2: Signature verification with SFLASH

7 Security of the SFLASH algorithm

SFLASH is a C∗−− scheme with a special choice of the parameters.
The security of such schemes has been studied in [2].
The security is not proven to be equivalent to a simple to describe and assumed

difficult to solve problem. However, here are the present results on the two possible
kinds of attacks :

8

7.1 Attacks that compute a valid signature from the public key
as if it was a random set of quadratic equations (i.e. without
using the fact that we have a C∗−− scheme)

These attacks have to solve a MQ problem (MQ: Multivariate Quadratic equations), and
the general MQ problem is NP-Hard. Moreover, when the parameters are well chosen,
the known algorithms for solving such an MQ problem (such as XL, FXL or some
Gröbner base algorithms) are efficient. With our choice of parameters for SFLASH,
they require more computations than the equivalent of 280 TDES operations.

7.2 Attacks that use the fact that the public key comes from
a C∗−− scheme (and is not a random set of quadratic equa-
tions)

All the known attacks on this family have a complexity in O(qr), where r is the number
of removed equations (r = 11 in the SFLASH algorithm), and where q is the number
of elements of the finite field K used (so q = 128 = 27 for the SFLASH algorithm).
So these attacks will require more than the equivalent of 280 TDES operations for the
SFLASH algorithm.

8 Summary of the characteristics of SFLASH

• Length of the signature: 259 bits.

• Length of the public key: 15.4 Kbytes.

• Length of the secret key: the secret key (2.45 Kbytes) is generated from a small
seed of at least 128 bits.

• Time to sign a message1: less than 2.7 ms (maximum time).

• Time to verify a signature2: less than 0.8 ms (i.e. approximately 37 × 37 × 26
multiplications and additions in K).

• Time to generate a pair of public key/secret key: less than 1 s.

• Best known attack: more than 280 TDES computations.

References

[1] W. Geiselmann, R. Steinwandt, Th. Beth, Attacking the Affine Parts of SFLASH ,
in Proceedings of the second NESSIE Workshop, 12-13 September 2001, Egham,
UK.

[2] J. Patarin, L. Goubin, N. Courtois, C∗−+ and HM: Variations around two schemes
of T. Matsumoto and H. Imai, in Advances in Cryptology, Proceedings of ASI-
ACRYPT’98, LNCS n◦ 1514, Springer Verlag, 1998, pp. 35-49.

1On a Pentium III 500 MHz. This part can be improved: the given software was not optimized.
2This part can be improved: the given software was not optimized.

9

9 Appendix - Changes to SFLASH.

The SFLASH signature scheme has modified, as allowed in the second stage of Nessie
evaluation process. In some papers that refer to the old version, it is sometimes
called SFLASHv1, and SFLASHv2 is the new final version. The only official version of
SFLASH is now SFLASHv2 that can be called just SFLASH.

In this section we summarize the changes, which is aimed at readers and developers
that are acquainted with the previous version SFLASHv1. It requires the knowledge of
the previous version of SFLASH. Both in the first version of specification (SFLASHv1),
as well as in the main part of the present document (above) that specifies completely
SFLASHv2, we used the same notations.

Choosing the coefficients of s and t in GF(128) instead of GF(2)

The only modification between SFLASHv1 and SFLASHv2 consists in choosing the
coefficients of the secret affine transformations s and t in the fields K = GF(128),
instead of the subfield K ′ = GF(2).

This is done to prevent a new attack that has been very recently discovered on
SFLASHv1 and was indicated to us by Henri Gilbert. By choosing GF(128), we combine
the advantages of FLASH and SFLASHv1 : choosing the coefficients of s and t in
the “big” field GF(128) (instead of the “small” field GF(2)) avoids the new attack;
and choosing GF(128) (instead of GF(256) as in FLASH) avoids some potential other
attacks due to the existence of subfields.

Due to our modification, the size of the public key has increased from 2.2 Kbytes
to 15.4 Kbytes. However, this modification is essential if we want to keep a good level
of security for SFLASH.

Note that with our modification, the attack described by Geiselmann, Steinwandt
and Beth in their paper “Attacking the Affine Parts of SFLASH” (presented at the
second NESSIE workshop, see [1]) does not apply to SFLASHv2.

10

