
C∗
−+ and HM : Variations around two schemes of

T. Matsumoto and H. Imai

- Extended Version -

Jacques Patarin, Louis Goubin
BULL Smartcards and Terminals

68 route de Versailles - BP 45
78431 Louveciennes Cedex - France

e-mail : {J.Patarin,L.Goubin}@frlv.bull.fr

Nicolas Courtois
Systèmes Information Signal (SIS)

Université de Toulon et du Var - BP 132
83957 La Garde Cedex - France

e-mail : courtois@univ-tln.fr

Abstract

In [4], H. Imai and T. Matsumoto presented some new candidate trapdoor one-way permutations
with a public key given as multivariate polynomials over a finite field. One of these schemes was later
presented in [7] under the name C∗, and was based on the idea of hiding a monomial field equation.
This scheme was broken in [8] by Jacques Patarin, due to unexpected algebraic properties. J. Patarin
and L. Goubin then suggested ([9], [10], [11], [12]) some schemes to repair C∗, but this was done
at the cost of slightly more complex public key or secret key computations. In part I of this paper,
we will study some very simple variations of the C∗ scheme, where the attack of [8] is avoided,
and where the very simple secret key computations are kept. The C∗

−+ scheme will be one of these
variations. We will design some new cryptanalysis that are efficient against some of – but not all –
these variations.

Another scheme of [4], very different from C∗ (despite the name), was called [C] and was based
on the idea of hiding a monomial matrix equation. No cryptanalysis has been published so far for
this scheme. In part II of this paper, we will show how to attack this scheme [C]. We will then study
more general schemes, still using the idea of hiding matrix equations. The HM scheme will be one
of these variations.

1 Introduction

What is – at the present – the asymmetric signature algorithm with the most simple smartcard imple-
mentation (in terms of speed and RAM needed), and not broken ?
We think that it is one simple variation of the Matsumoto-Imai C∗ algorithm that we will present
in the part I of this paper. The C∗ algorithm was presented in [4] and [7], and was broken in [8],
due to unexpected algebraic properties. However, it is possible to imagine many ways of avoiding the
cryptanalysis of [8].
In [9], J. Patarin suggested to use a ”hidden polynomial” instead of a ”hidden monomial”. These ”HFE”
algorithms are still unbroken. However, the secret key computations in HFE schemes are sensibly more
complex than in the original C∗ scheme. In [10], [11] and [12], J. Patarin and L. Goubin also studied
some variations, where the public equations are given in different forms (some of these schemes are
also presented in [5]), but here again, in order to avoid the attacks, the secret key computations or the
public key computations are generally slightly more complex than in the original C∗ scheme.
In part I of this paper, we will design and study a few very simple variations of the original C∗ scheme.
We will keep a quadratic public key and the main secret key operations will still be the computation
of a monomial function f : x 7→ xh in a finite field. (The length of the elements of this finite field is

1

much shorter than what we have in RSA, and this explains why the implementations are much more
efficient.)
Some of the new variations will be broken in this paper. However, as we will see, there are still some
very simple and efficient variations that we do not know how to break. These schemes are related to
some problems of orthogonal polynomials (how to complete a set of orthogonal polynomials, how to
eliminate some random polynomials linearly mixed with orthogonal polynomials, etc).
It can be noticed that all the very simple transformations that we will study in the case of the C∗

scheme, can also be applied to the more general HFE scheme of [9]. We concentrate on C∗ because
the secret computations of C∗ are particularly efficient, and because we wanted to see if these simple
ideas could be sufficient or not to enforce the security (in HFE, the analysis is more difficult since no
efficient attacks are known at the present).
In part II of this paper, we will study a very different (despite the name) algorithm of [4], called [C]. It
is based on the idea of hiding (with secret affine transformations) a monomial matrix equation. Since
the multiplication of matrices is a non-commutative operation, it creates a scheme with very special
features. However, as in C∗ or HFE, the public key is still given as a set of multivariate polynomials
on a finite field, and some of the ideas used in [8] will also be useful.
We will show how to break the original [C] sheme (no cryptanalysis of this scheme was published
before). We will then study some more general schemes, based on the same idea of hiding matrix
equations.
Since all the unbroken algorithms presented in this paper are new and very similar to broken algorithms,
we certainly do not recommend to use them for very sensible applications. However, we believe that
it is nice to study them because they have very efficient implementations and because they provide
a better understanding of the subtle links between the concept of asymmetric cryptosystem and the
computations required for security.

Part I

Variations around C∗

2 A short description of HFE and C∗

We present a short description of the HFE and C∗ schemes. See [7] (for C∗), or [9] (for HFE) for more
details.

The quadratic function f
Let K = Fq be a finite field of cardinality q. Let Fqn be an extension of degree n over Fq. Let

f(a) =
∑
i,j

βi,ja
qθij +qϕij +

∑
k

αka
qξk + µ ∈ Fqn [a]

be a polynomial in a over Fqn , of degree d, for integers θij , ϕij and ξk ≥ 0.
Since Fqn is isomorphic to F[x]/(g(x)), if g(x) ∈ Fq[x] is irreducible of degre n, elements of Fqn may
be represented as n-uples over Fq, and f may be represented by n polynomials in n variables a1, ..., an

over Fq:
f(a1, ..., an) = (f1(a1, ..., an), ..., fn(a1, ..., an)).

The fi are quadratic polynomials, due to the choice of f and the fact that a 7→ aq is a linear transfor-
mation of Fqn .

Secret affine transformation of f
Let s and t be two secret affine bijections (Fq)n → (Fq)n, where (Fq)n is regarded as an n-dimensional

vector space over Fq.
Using the function f above and some representation of Fqn over Fq, the function (Fq)n → (Fq)n that
assigns t(f(s(x))) to x ∈ (Fq)n can be written as

t(f(s(x1, ..., xn))) = (p1(x1, ..., xn), ..., pn(x1, ..., xn)),

2

where the pi are quadratic polynomials due to the choice of s, t and f .

The ”basic” HFE (cf [9])

Public key: The polynomials pi, for i = 1, 2, ..., n, as above.

Secret key: The function f and the two affine bijections s and t as above.

Encryption: To encrypt the n-uple x = (x1, ..., xn), compute the ciphertext y = (p1(x1, ..., xn), ...,
pn(x1, ..., xn)) (x should have redundancy, or a hash of x should also be sent).

Decryption: To decrypt y, first find all the solutions z to the equation f(z) = t−1(y) by solving a
monovariate polynomial equation of degree d. This is always feasible when d is not too large (say
d ≤ 1000 for example) or when f has a special shape (as we will see below in the case of the C∗ scheme).
Next, compute all the s−1(z), and use the redundancy (or the hash of x) to find M from these.

The ”basic” HFE in signature
HFE can also be used in signature, as explained in [9] (essentially, the idea is that now x will be the

signature and y the hash of the message to be signed. If the equation f(z) = t−1(y) has no solution z,
we compute another hash).

The C∗ algorithm (cf [7])
C∗ can be seen as a special case of the more general HFE scheme, where the function f is f(a) = a1+qθ

.
Such a function f has some practical advantages: if K is of characteristic 2 and if 1 + qθ is coprime to
qn − 1, then f is a bijection, and the computation of f−1(b) is easy since f−1(b) = bh′ , where h′ is the
inverse of 1 + qθ modulo qn − 1.
However, the C∗ scheme was broken in [8], essentially because – in the case of a C∗ scheme – there
always exist equations such as∑

i,j

γijxiyj +
∑

i

αixi +
∑
j

βjyj + µ0 = 0 (1)

from which it is possible to break the scheme (see [8]). (Here x is the cleartext (or the signature), y
is the ciphertext (or the hash of the message), and γij , αi, βi and µ0 are elements of K.) Throughout
this paper, we will call ”equation of type (1)” any equation like (1).
In the case of HFE, no cryptanalysis has yet been found (when f is well chosen), but the secret key
computations are more complex.

3 Three simple variations of C∗ (and HFE)

3.1 Less public polynomials

The polynomials (P1, . . . , Pn) of the ”basic” HFE algorithm give y from x. However, it is possible to
keep some of these polynomials secret. Let k be the number of these polynomials Pi that we do not
give in the public key, so that only P1, P2, ..., Pn−k are public.

• In an encryption scheme, k must be small, because in order to recover x from y, we will compute
the qk possibilities for y, compute all the corresponding possible x, and find the good x thanks
to the redundancy.

When q is not too large, and when k is very small, for example with k = 1 or 2, this is clearly
feasible.

• In a signature scheme, k may be much larger. However, we must still have enough polynomials
Pi in order that the problem of finding a value x, whose images by P1, ..., Pn−k are given values,
is still intractable. A value k = 1, 2, or k = n

2 for example may be practical and efficient.

3

Note: This idea to keep some polynomials Pi secret may increase, or not, the security of some
schemes. In this paper, we will study the cryptanalytic effects of this idea on the original C∗ scheme.
We will call C∗

− the obtained scheme (− means that we have less public equations).

3.2 Introducing some random polynomials

Let Pi be the public polynomials in x1, x2, ..., xn, of a ”basic” HFE scheme.
We can imagine to introduce some random extra quadratic polynomials Qi in x1, ..., xn, and to mix
the polynomials Qi and Pi with a secret affine bijection in the given public key. Let k be the number
of these Qi polynomials.

• In a signature scheme, k must be small, because for a given x, the probability to satisfy these
extra Qi equations is 1

qk . When m and k are small, the scheme is efficient: after about qk tries,
we will obtain a signature.

• In an encryption scheme, k may be much larger. However, the total number k + n of quadratic
public equations must be such that the problem of finding x from a given y is still intractable
(hence k + n must be < n(n+1)

2 , because with n(n+1)
2 equations, the values xixj will be found by

Gaussian reductions, and then the values xi will be found). A value k = 1, 2 or k = n
2 for example

may be practical and efficient.

Note 1: This idea of introducing some random polynomials may increase, or not, the security of
some schemes. In this paper, we will study the cryptanalytic effects of this idea on the original C∗

scheme. We will call C∗
+ the obtained scheme (+ means that we mixed the public equations with

additional random equations).

Note 2: Of course, it is possible to combine the variations of sections 3.1 and 3.2. For example, it
is possible to design a signature or an encryption scheme from a ”basic” HFE with polynomials P1,
..., Pn, by keeping Pn secret, introducing a random polynomial Qn instead of Pn, and computing the
public key as a secret affine transformation of P1, ..., Pn−1, Qn. In the case of a C∗ scheme, we will
call C∗

−+ such algorithms.

Note 3: In this paper, we will study the cryptanalytic effects of these ideas on the original C∗

scheme, but potentially, these general ideas (adding or/and eliminating some equations) can also be
used in many other algorithms such as HFE of [9], or Dragon schemes of [10].

3.3 Introducing more xi variables

In signature, it is easy to introduce more xi variables. In a ”basic” HFE scheme, we have b = f(a),
where:

f(a) =
∑
i,j

βija
qθij +qϕij +

∑
i

αia
qξi + µ0, (1)

where βij , αi and µ0 are elements of Ln.
Let a′ = (a′1, ..., a

′
k) be a k-uple of variables of K.

In (1), let now αi be an element of Ln such that each of the n components of αi in a basis is a secret
random linear function of the variables a′1, ..., a′k.
And in (1), let now µ0 be an element of Ln such that each one of the n components of µ0 in a basis is
a secret random quadratic function of the variables a′1, ..., a′k.
Then, the n + k variables a1, ..., an, a′1, ..., a′k, will be mixed in the secret affine bijection s in order to
obtain the variables x1, ..., xn+k.
And, as before, t(b1, ..., bn) = (y1, ..., yn), where t is a secret affine bijection.
Then the public key is given as the n equations yi = Pi(x1, ..., xn+k).
To compute a signature, the values a′1, ..., a′k will simply be chosen at random. Then, the values µ0

and αi will be computed. Then, the monovariate equation (1) will be solved (in a) in Ln.

Note: This idea, as before, may or may not increase the security of some schemes.

4

4 First remarks about C∗
−

First example of attack (with the birthday paradox)

For example, let us assume that we have a Matsumoto-Imai algorithm with K = F2, n = 64, f(x) =
x1+2θ

.
So we will have 64 public polynomials P1, P2, . . . , P64.
This algorithm can be attacked as shown in [8].
Now let us assume that P64 is kept secret. Decryption of a message (with the secret key) is still possible
as follows: we will try the two possibilities for P64, so we will find exactly two solutions for the cleartext
x, and thanks to redundancy in x, the right x will be found.
Is this scheme secure ? No.
To attack this scheme, we can proceed like this:

1. Find two values x and x′, x 6= x′ such that C(x) = C(x′). By C(x) we mean the encryption of x
with the algorithm, i.e. the output of the polynomials P1, P2, . . . P63.

2. Let P64 =
n∑

i=1

n∑
j=1

γijxixj +
n∑

i=1

µixi + δ0.

Since a Matsumoto-Imai algorithm is a permutation, we know that P64(x)⊕P64(x′) = 1. It gives
us a linear relation in the coefficients γij , µi.

3. Go back to 1 until we have found sufficiently many linear relations in γij , µi in order to find a
candidate P64 so that P1, P2, . . . , P64 are the components of a permutation of F64

2 .

4. Attack P1, P2, . . . P64 as for a usual Matsumoto-Imai algorithm with the attack described in [8].

For Step 1, we will proceed like this:
1a. We will compute and store in a file F , say 232 pairs (x, C(x)). (If this storage capacity is not
available then some time/memory trade off are possible: we will need less storage but more time). The
storage is done in a way to have easy access to x when C(x) is given.
1b. Now we generate and compute 2k new pairs (x′, C(x′)), where k is an integer that we will fix
afterwards. For each of these pairs, the probability that ∃x ∈ F such that C(x) = C(x′) is about
1/232. (This is because since the Matsumoto-Imai algorithm is a permutation, there is exactly one x,
x 6= x′, so that C(x) = C(x′), it is the value x with the same P1, . . . , P63 and the opposite P64. And
the probability that this x is in F is about 232/264 = 1/232 because there are about 232 values in F
and 264 possible values for x).
So the number of x, x′, x 6= x′, so that C(x) = C(x′) that we will found is about 2k/232 = 2k−32.
So if we only need one such pair (x, x′), we can have k ' 32.
Here we need a few of these pairs and k will be slightly bigger than 32, but the attack will be very
efficient.

An attack that does not work

In order to avoid the attack given above, one can suggest to have messages of at least 128 bits (i.e.
n ≥ 128 if K = F2), and/or to keep secret more than one bit of the output (for example to keep secret
at least two polynomials if K = F2).
However, even with these transformations, we do not recommend to use such a scheme, since we will
see in section 5 how to attack such a scheme. But, before this, we will show here an idea of attack that
does not work.
In the cryptanalysis of Matsumoto-Imai scheme given in [8], the key idea is to compute all the ”equations
of type (1)”, i.e. such as: ∑

γijxiyj +
∑

αixi +
∑

βiyi + δ0 = 0 (1).

However, as we will see in the simulations below, we may not find enough such equations for a crypt-
analysis if some public polynomials of Matsumoto and Imai are kept secret.

5

Nevertheless one can suggest, instead of computing these equations (1) to compute all the equations
such as: ∑

µijkxixjxk +
∑

νijxixj +
∑

αixi +
∑

βiyi +
∑

γijxiyj + δ0 = 0. (1′).

These equations (1’) will be computed as usual, since each pair (cleartext/ciphertext) gives linear
equations in the coefficients µijk, νij , αi, βi, γij , δ0.
So after some Gaussian reductions all the valid equations (1’) will be found.
Moreover all the now secret expressions in yi are polynomials of degree two in the xi variables, so for
each equation (1) of the original Matsumoto-Imai scheme there is one equation (1’) of the scheme with
less public polynomials.
So a lot of these equation (1’) always exist. From these equations (1’) one can think that, maybe, a
cryptanalyst will be able to recover the expression of the secret (originaly public) polynomials linear in
yi.

However, this attack does not work, and the existence of these equations (1′) is not a problem for the
scheme, as we will see below.
The vector space of the equations (1′) is of dimension at least n2 + n, since all yi, 1 ≤ i ≤ n, and
all xiyj , 1 ≤ i ≤ n, 1 ≤ j ≤ n, can be written as polynomials of degree 2 or 3 in the xk variables.
Moreover, the dimension is exactly n2 + n, since if it was more than n2 + n, by Gaussian reduction,
we would obtain an equation (1′), say P , with only terms in the xk variables. Since P (x1, ..., xn) = 0
for any (x1, ..., xn), we would thus have P = 0.
It is therefore easy to see what the equations (1′) are: they can be seen as the expression as polynomials
of degree 3 in xk of the yi and xiyj . As a result, they can be obtained immediately from the public
key (i.e. from the yj expressions). There is thus a great difference between equations (1) and (1′):
equations (1) are true only for some very simple and very specific quadratic functions y (as in the C∗

scheme), whereas equations (1′) always exist, even for random quadratic functions y. Therefore, the
existence of these equations (1′) (unlike equations (1)) is not a dangerous threat for the schemes.

5 Toy simulations of C∗
−+ with n = 17

We have made some toy simulations with K = F2 and n = 17 of the C∗
−+ algorithm. (These are

just ”toy” simulations because here the value of n is very small. In real examples, n must be ≥ 64 if
K = F2).
In all these simulations, we have computed the exact number of independent equations between the 16
bits of the input x1, ..., x16, and the 16 bits of the output y1, ..., y16 of the following form:∑

γijxiyj +
∑

αixi +
∑

βiyi + δ0 = 0 (1)

or ∑
γijkxiyjyk +

∑
µijxiyj +

∑
νijyiyj +

∑
αixi +

∑
βiyi + δ0 = 0 (2)

or ∑
γijkxixjyk +

∑
µijxiyj +

∑
νijxixj +

∑
αixi +

∑
βiyi + δ0 = 0 (3)

The obtained results are given in the tables below.
Throughout this paper, we call ”equations of type (1)” (resp. 2, 3) any equation like (1), (resp. (2),
(3)).

Note 1: In these tables, we have subtracted the number of independent ”trivial” equations, such as
x2

i = xi, or yi·”yj”=”yi”·yj , where ”yi” and ”yj” are written with their expression in the xk variables.

Note 2: The notation [α] means that, when the yk variables are given explicit values, we obtain in
average α independent equations in the xk variables.

(In the tables below, we always have K = F2 and n = 17.)

6

C∗ : f(x) x3 x5 x9 x17 x33 x65 x129

Equations (1) 34 [16] 17 [16] 17 [16] 17 [16] 17 [16] 17 [16] 17 [16]
Equations (2) 612 [16] 340 [16] 323 [16] 340 [17] 323 [16] 374 [16] 323 [16]
Equations (3) 578 [153] 442 [153] 476 [153] 493 [153] 476 [153] 459 [153] 493 [153]

Table 1

C∗
−+1 : f(x) x3 x5 x9 x17 x33 x65 x129

Equations (1) 17 [15] 1 [1] 1 [1] 1 [1] 1 [1] 1 [1] 1 [1]
Equations (2) 340 [15] 52 [15] 36 [15] 36 [15] 36 [15] 87 [15] 36 [15]
Equations (3) 443 [153] 307 [152] 341 [153] 358 [153] 341 [152] 324 [152] 358 [153]

Table 2

C∗
−+2 : f(x) x3 x5 x9 x17 x33 x65 x129

Equations (1) 1 [1] 0 [0] 0 [0] 0 [0] 0 [0] 0 [0] 0 [0]
Equations (2) 54 [13] 0 [0] 0 [0] 0 [0] 0 [0] 0 [0] 0 [0]
Equations (3) 309 [151] 173 [135] 207 [151] 224 [152] 207 [150] 190 [152] 224 [153]

Table 3

C∗
−+3 : f(x) x3 x5 x9 x17 x33 x65 x129

Equations (1) 0 [0] 0 [0] 0 [0] 0 [0] 0 [0] 0 [0] 0 [0]
Equations (2) 0 [0] 0 [0] 0 [0] 0 [0] 0 [0] 0 [0] 0 [0]
Equations (3) 176 [153] 51 [68] 74 [91] 91 [108] 74 [91] 57 [74] 91 [108]

Table 4

C∗
−+4 : f(x) x3 x5 x9 x17 x33 x65 x129

Equations (1) 0 [0] 0 [0] 0 [0] 0 [0] 0 [0] 0 [0] 0 [0]
Equations (2) 0 [0] 0 [0] 0 [0] 0 [0] 0 [0] 0 [0] 0 [0]
Equations (3) 44 [61] 0 [17] 0 [17] 0 [17] 0 [17] 0 [17] 0 [17]

Table 5

As shown in these tables, the attacks of [8] do not work directly if we have less public polynomials, at
least if f(x) = x3 is avoided and if two or more polynomials are kept secret.

6 First cryptanalysis of C∗
−

Principle of the attack
We denote by P the complete public form of C∗. We suppose that the first r public equations have

been removed. Let P(r+1)...n be the remaining part of P .
The aim of the attack is to recover the public equations P1...r and then to use the classical attack of
[8]. Obviously, those equations can be found only modulo the vector space generated by all the public
equations.

Description of the algorithm
Let Q be the polar form of P , defined by:

Q(x, t) := P (x + t)− P (x)− P (t).

1. We randomly choose t 6= 0 and x(0).

2. We compute z(r+1)...n := Q(r+1)...n(x(0), t).

3. We solve the equation:
Q(r+1)...n(x, t) = z(r+1)...n

where x is the indeterminate. There are at least two solutions (x(0) and x(0) + t) and at most
2.2r solutions. This comes from the fact that – for a given value z1...r – (among 2r possible), the
equation Q(x, t) = z has 0 or 2 solutions.

7

Proof: Suppose that x and x′ are two distinct solutions.

Q(x, t) = Q(x′, t) ⇒ P (x + t)− P (x) = P (x′ + t)− P (x′).

By definition of P , this yields:

t(s(x + t)1+2θ − s(x)1+2θ
) = t(s(x′ + t)1+2θ − s(x′)1+2θ

).

Since t is bijective, we also have:

s(x + t)1+2θ − s(x)1+2θ
= s(x′ + t)1+2θ − s(x′)1+2θ

.

If we let λ = s(0), we can write:

(s(x) + s(t) + λ)(s(x)2
θ
+ s(t)2

θ
+ λ2θ

)− s(x).s(x)2
θ

= (s(x′) + s(t) + λ)(s(x′)2
θ
+ s(t)2

θ
+ λ2θ

)− s(x′).s(x′)2
θ
.

After a few computations, we obtain:

(s(x′ − x) + λ).(s(t) + λ)2
θ

= (s(x′ − x) + λ)2
θ

.(s(t) + λ).

Since x 6= x′, this implies:

(s(x′ − x) + λ)2
θ−1 = (s(t) + λ)2

θ−1.

Finally, a 7→ a2θ−1 is bijective, because gcd(2θ − 1, 2n − 1) = 1, so that

x′ = x + t.

As a result, if x is a solution, there exists exactly one other solution: x′ = x + t.

Steps 1, 2 and 3 are repeated until we obtain the maximum number of solutions: 2.2r (we use each
time a different choice for t 6= 0 and x(0)). The average number of necessary tries is estimated to be
about 2r.

4. Suppose we have found t 6= 0 and x(0) such the equation

Q(r+1)...n(x, t) = z(r+1)...n

has exactly 2.2r solutions:{
x(0), x(0) + t, x(1), x(1) + t, ..., x(2r−1), x(2r−1) + t

}
.

Let k be an integer such that 1 ≤ k ≤ r. For half of the solutions, we have Qk(x, t) = 0, and for
the other half, we have Qk(x, t) = 1, and this remains true if we consider only the subset{

x(0), ..., x(2r−1)
}

of the set of solutions. Therefore, a summation gives:

2r−1∑
ν=0

Qk(x(ν), t) = 2r−1.

This gives an equation of degree one on the n(n−1)
2 + 1 coefficients of Qk (this equation is the

same for all the values k, 1 ≤ k ≤ r).

5. By repeating steps 1-4 O(n2) times, with different choices of (x(0), t), we expect to find n(n−1)
2 +

1 − n equations on the coefficients of the Qk (1 ≤ k ≤ r). This will give Q1, ..., Qr modulo the
vector space generated by all the public equations.

8

6. The public polynomials Pk (1 ≤ k ≤ r) are not yet completely determined: Qk only contains
terms of the form xitj + xjti (i 6= j) (which come from terms xixj (i 6= j) of Pk), and a constant
term (which is the same as the one of Pk). We can suppose that K = F2, and thus we can write:

Pk = P̃k +
∑

i

νikxi (1 ≤ k ≤ r)

where P̃k is now known, but where the coefficients νik are still to be found. We also note Pk = P̃k

when r + 1 ≤ k ≤ n, and ỹk = P̃k(x1, ..., xn) for 1 ≤ k ≤ n.

¿From the cryptanalysis of C∗, we know that there exist equations of the form∑
i,j

γijxiyj +
∑

i

αixi +
∑

i

βiyi + δ0 = 0.

i.e. (with the notations above):

∑
i,j

γijxiỹj +
∑

i

αixi +
∑

i

βiỹi + δ0 +
∑

i

r∑
j=1

γijxi

(∑
k

νkjxk

)
+

r∑
i=1

βi

(∑
k

νkixk

)
= 0.

If we replace ỹj by P̃j(x1, ..., xn) and if we consider the terms of total degree 3 in the xi, we obtain
n(n−1)(n−2)

6 equations on the n2 indeterminates γij , which can thus be determined by gaussian
reductions.

We then consider the terms of total degree 2 in xi, and that gives n(n−1)
2 equations on the rn + n

indeterminates νkj and βi.

7. Once P1, ..., Pn are completely known, the classical attack on C∗ can be applied, so that C∗
− (when

r is small) is also broken. The complexity of this cryptanalysis is in O(qr) plus the complexity of
the cryptanalysis of the original C∗ scheme.

Remark: This cryptanalysis uses deeply the fact that C∗ is a permutation polynomial. A general
theory about permutation polynomials, and the related notion of orthogonal systems of equations, can
be found in [6], chapter 7.

7 The C∗
−− algorithm

When qr ≥ 264, then the cryptanalysis given in section 6 is not efficient. The scheme is then called
C∗
−−. The C∗

−− scheme cannot be used for encryptions any more, but this scheme is still a very efficient
scheme for signatures, and its security is an open problem.

8 Cryptanalysis of C∗
+

The cryptanalysis of C∗
+ is very simple: it just works exactly as the original cryptanalysis of C∗. We

will first generate all the equations∑
i,j

γijxiyj +
∑

i

αixi +
∑
j

βjyj + δ0 = 0. (1)

Since in C∗
+, we just have added some equations (and eliminated none), we will find at least as much

equations (1) as in the original C∗.
Then, as explained in [8], from such equations (1) we will be able to find x from y (and thus to break
the system).

Remark 1: Moreover, we will be able to eliminate the random added equations and to recover an
original C∗, because an equation (1) generally comes from only the yi of C∗ (and not from the added
equations). Therefore, by generating an equation (1), by writing it as x1(P1(y)) + x2(P2(y)) + . . . +
xn(Pn(y)) (where P1, ..., Pn are polynomials of degree one in y1, ..., yn+k), and by making the change of
variables y′1 = P1(y), ..., y′n = Pn(y), the variables y′1, ..., y′n are the outputs of an original C∗ scheme.

9

Remark 2: However, this idea of adding an equation may be much more efficient in a scheme where
no equation (1) exist (as in some HFE schemes) (or when we add and eliminate some equations, as we
will see in C∗

−+).

9 Cryptanalysis of C∗
−+, second cryptanalysis of C∗

−

The idea
Let us consider – as an example – (A) and (B) the two following equations of type (1) on K = F2:

x1y1 + x3y4 + x4y4 + x5y2 = 0, (A)

x3y1 + x4y2 + x5y2 = 1. (B)

Then x3 · (A) + x1 · (B) gives:

x3y4 + x3x4y4 + x3x5y2 + x1x4y2 + x1x5y2 = x1. (C)

This equation is an equation ”of type (3)”, and it has no term in y1.

Cryptanalysis of C∗
−+1

We will first use this idea for the cryptanalysis of C∗
−+ when the number r of removed equations is

r = 1.
We know that from the variables of the original C∗ we have at least n independent equations of type
(1).
So by multiplying these equations by one xk, 1 ≤ k ≤ n, we generate n2 independent equations of type
(3).
By Gaussian reductions, we will obtain at least n2 − n(n+1)

2 (= n(n−1)
2) equations of type (3) with no

terms in y1 (because we have at most n(n+1)
2 terms in y1xixj or y1xi).

Now, when we give explicit values for y, we obtain (by Gaussian reductions on the Xij = xi ·xj variables)
the xi values. As a result, with the equations (3) we will be able to break C∗

−+1: i.e. to recover an x
from a given y.

Remark: This attack works because (as shown in our simulations, see the tables of section 5)
the number of independent equations does not decrease significantly when the yk variables are given
explicit values. Moreover, our simulations also show that in this attack (based on equations (3)), we
will generally have more than n(n−1)

2 equations (3) for r = 1, so that the attack will work even better
than expected.

Cryptanalysis of C∗
−+r, for r = 2, 3

As shown in the tables, we generally have more than n(n−1)
2 equations of type (3), so that the attack

also works very well when r = 2 or r = 3, since we have more equations (3) than expected. Of
course, when – after Gaussian reductions – we still have a few variables to guess, we can guess them
by exhaustive search (if this number is very small).

Cryptanalysis of C∗
−+r, for r ≥ 4

When r ≥ 4, the attack given above may not work, so that we may need to generalize this attack
by generating more general equations such as equations of total degree d ≥ 4 (instead of three), and of
degree one in the yi variables.
We know that from the variables of the original C∗ we have at least n independent equations of type
(1). So by multiplying these equations by d − 2 variables xk, 1 ≤ k ≤ n, we generate about n · nd−2

(d−2)!
independent equations of the following type:∑

γi1i2...idxi1xi2 ...xid−1
yd + ... = 0. (∗)

By Gaussian reductions, we will obtain at least n · nd−2

(d−2)! − r · nd−1

(d−1)! equations (∗) with no terms in y1,

y2, ..., yr (because we have at most nd−1

(d−1)! terms in yµxi1xi2 ...xid−1
, and r values µ such that 1 ≤ µ ≤ r).

10

Now, when we give explicit values for y, we obtain (by Gaussian reductions on the Xi1...id−1
= xi1 ...xid−1

variables) the xi values if

n · nd−2

(d− 2)!
− r · nd−1

(d− 1)!
≥ nd−1

(d− 1)!

(because as shown in our simulations the number of independent equations do not dramatically decrease
when we give explicit values for y), i.e. when r ≤ d− 2.

Complexity: The complexity of this attack is essentially the complexity of Gaussian reductions on
O(nd) terms. This complexity is in O(nωd), with ω = 3 in the usual Gaussian reduction algorithms, or
ω = 2.3755 in the best known general purpose Gaussian reduction algorithm (see [1]). As a result, this
complexity increases in O(nωr), i.e. exponentially in r.

Since our simulations show that this attack works sensibly better than described above (because we
have a few more equations (∗)), we expect that – with this attack – it is feasible to attack C∗

−+r when
r ≤ 10 approximately. Therefore, we think that any r ≤ 10 is insecure. However, the complexity of the
attack increases a lot when r increases. Hence, at the present, for practical applications, it is an open
problem to find efficient cryptanalysis of C∗

−+r when r > 10.

Can we recover the corresponding C∗
− from C∗

−+ ?
This is sometime feasible. For example, when we have equations of type (2) (this is generally the

case only when r is very small: see the tables), then these equations generally come from yk variables
of the original C∗

−, and not from the added random quadratic equations. Therefore, by looking at the
terms in factor of a monomial xixj in those equations (2), we will find the vector space generated by
the public equations of the original C∗

− equations. (Then in such a case the C∗
−+ algorithm can be

attacked as a C∗
− algorithm.)

Remark: One can think to also use this idea on equations of type (3) instead of equations of type (2).
However, there is a technical problem with the equations of type (3): these equations are ”mixed” with
”trivial” equations yi·”yj”=”yi”·yj , where ”yi” and ”yj” are written with their quadratic expression in
the xk variables. And it is not clear how these ”trivial” equations can be removed. This is why we
have used equations (2) instead.

Part II

Schemes with a hidden matrix

10 The [C] scheme

In this section, we recall the description of the [C] scheme, presented by H. Imai and T. Matsumoto in
[4].
Let K = GF (2m) be a public finite field of cardinality q = 2m. The basic idea is to use the transfor-
mation A 7→ A2 of the set M2(K) of the 2× 2 matrices over the field K.
This transformation is not one-to-one, but it can be made bijective if we restrict ourselves to matrices
with a non-zero trace:

Lemma 1 Let E = {M ∈M2(K), tr(M) 6= 0}.
Then Φ :

{
E → E
A 7→ A2 is bijective. Moreover, for any B ∈ E, we have:

Φ−1(B) =
1√

tr(B)
·
(
B +

√
det(B) · I

)
,

where √ denotes the inverse of the bijective function
{

GF (2m) → GF (2m)
λ 7→ λ2

.

11

Proof: Let B ∈ E .

• ¿From Cayley-Hamilton theorem (applied to B), we have:

B2 − (tr B) ·B + (det B) · I = 0

and thus (B +
√

det(B) · I)2 = (tr B) ·B. Since tr(B) 6= 0, we obtain B +
√

det(B) · I 6= 0.

• Suppose that a matrix A exists such that A2 = B. By applying Cayley-Hamilton theorem to A,
we have:

A2 − (tr A) ·A + (det A) · I = 0

i.e.
(tr A) ·A = B +

√
det(B) · I.

As a result, we have tr(A) 6= 0 and A = λ · (B +
√

det(B) · I), which gives easily:

A =
1√

tr(B)
·
(
B +

√
det(B) · I

)
.

Reciprocally, this A is a satisfies A2 = B and tr(A) 6= 0.

• In conclusion, Φ is a bijective transformation of E , and:

Φ−1(B) =
1√

tr(B)
·
(
B +

√
det(B) · I

)
.

Note: The function √ is easy to compute, since we have
√

λ = λ2m−1
for any λ ∈ GF(2m).

We now describe the [C] scheme used in encryption mode.

The set M2(K) can be considered as a vector space of dimension 4 over K. Therefore, we can choose
s : K4 →M2(K) and t : M2(K) → K4 two secret linear bijections such that:

• s maps the hyperplane {x1 = 0} of K4 onto the hyperplane {tr(M) = 0} of M2(K);

• t maps the hyperplane {tr(M) = 0} of M2(K) onto the hyperplane {x1 = 0} of K4.

Representation of the messages
Each message M is represented by a 4-uple (x1, x2, x3, x4) ∈ K4 such that x1 6= 0. The message space

is M = {(x1, x2, x3, x4) ∈ K4, x1 6= 0}.

The quadratic function f
We then define the following quadratic function on the message space:

f :
{M→M

x 7→ t(s(x)2) .

The hypotheses made on s and t, together with lemma 1, show that the function f is a bijection.

Public key: The 4-uple (p1, p2, p3, p4) of 4-variate quadratic polynomials over K that represent f .
They are defined by:

f(x1, x2, x3, x4) = (p1(x1, x2, x3, x4), p2(x1, x2, x3, x4), p3(x1, x2, x3, x4), p4(x1, x2, x3, x4)).

Secret key: The two linear bijections s and t.

Note: For s (respectively t), there are |GL3(K)| · |K3| · |K∗| = (q3−1)(q3−q)(q3−q2)q3(q−1) ' q13

possibilities, instead of |GL4(K)| = (q4 − 1)(q4 − q)(q4 − q2)(q4 − q3) ' q16 if we remove the condition
”s maps M onto E” (respectively ”t maps E onto M”).

12

Encryption
To encrypt the message M represented by x = (x1, x2, x3, x4) ∈ M, compute the ciphertext y =

(y1, y2, y3, y4) with the following formulas:
y1 = p1(x1, x2, x3, x4)
y2 = p2(x1, x2, x3, x4)
y3 = p3(x1, x2, x3, x4)
y4 = p4(x1, x2, x3, x4)

Decryption
To decrypt the ciphertext y ∈M, compute:

x = s−1

(
1√

tr(t−1(y))
·
(

t−1(y) +
√

det(t−1(y)) · I
))

.

11 First cryptanalysis of [C]

The security of the cryptosystem is based on the difficulty of solving the following system of 4 quadratic
equations in 4 variables over K = GF (2m):

y1 = p1(x1, x2, x3, x4)
y2 = p2(x1, x2, x3, x4)
y3 = p3(x1, x2, x3, x4)
y4 = p4(x1, x2, x3, x4)

Unfortunately, such a system can always be easily solved by using an algorithm based on Gröbner
bases. At the present, the best implementations of Gröbner bases can solve any set of n quadratic
equations with n variables over any reasonable field K, when n ≤ 16 approximately (cf [2]). Therefore,
the original [C] is not secure.
This first cryptanalysis shows that the parameter n must not be too small if we want to avoid attacks
based on algebraic methods for solving systems of multivariate polynomial equations. That is why we
are going to describe a generalization of the scheme to higher dimensions (for which Gröbner bases
algorithms will be unefficient) in the next section.

12 The more general [Cn] scheme

We present here a generalization of the [C] scheme of H. Imai and T. Matsumoto, which involves n×n
matrices over the field K, instead of 2× 2 matrices. This cryptosystem will be called [Cn].
As in the case of [C], we take a public finite field K = GF (2m) of cardinality q = 2m.
The basic idea is still to use the transformation A 7→ A2 of the set Mn(K) of the n× n matrices over
the field K.

The set Mn(K) can be considered as a vector space of dimension n2 over K, so that we can choose
s : Kn2 →Mn(K) and t : Mn(K) → Kn2

two secret affine bijections.

We now describe the [C] scheme used in encryption mode.

Representation of the messages
Each message M is represented by a n2-uple (x1, ..., xn2) ∈ Kn2

. The message space is M = Kn2
.

The quadratic function f
We then define the following quadratic function on the message space:

f :
{M→M

x 7→ t(s(x)2) .

13

Public key: The n2-uple (p1, ..., pn2) of n2-variate quadratic polynomials over K that represent f .
They are defined by:

f(x1, ..., xn2) = (p1(x1, ..., xn2), ..., pn2(x1, ..., xn2)).

Secret key: The two affine bijections s and t.

Encryption
To encrypt the message M represented by x = (x1, ..., xn2) ∈ M, compute the ciphertext y =

(y1, ..., yn2) with the following formulas:
y1 = p1(x1, ..., xn2)

...
yn2 = pn2(x1, ..., xn2)

Decryption
To decrypt the ciphertext y ∈ M, one has to solve the equations A2 = B, where B = t−1(y), and

then to compute the cleartext x = s−1(A).
It is important to notice that A 7→ A2 is not a bijection any longer (contrary to the original [C] scheme
described in section 10). As a result, there may be several possible cleartexts for a given ciphertext. One
solution to avoid this ambiguousness is to put some redundancy in the representation of the messages,
by making use of an error correcting code of a hash function (for details, see [9] p. 34, where a similar
idea is used in a different scheme).
The feasibility of choosing the right cleartext among the possible ones is due to the fact that the number
of solutions A of the equations A2 = B remains reasonable, as shown in table 6 below:

pre-images n = 2 n = 3 n = 4 # pre-images n = 2 n = 3 n = 4
0 6 252 34440 13-15 0 0 0
1 8 160 22272 16 0 0 672
2 0 42 5040 17-21 0 0 0
3 0 0 0 22 0 2 240
4 2 56 2240 23-315 0 0 0

5-11 0 0 0 316 0 0 2
12 0 0 630 > 316 0 0 0

Table 6: Repartition of the number of pre-images for [Cn] over K = GF (2)

Note 1: In the case n = 4, the two matrices having 316 pre-images are 0 and I.

Note 2: These results are just ”toy simulations” of [Cn], because if K = GF (2), n must be such
that n2 ≥ 64 in real examples.

To solve the equation A2 = B when B is a given matrix of Mn(K), two methods can be used:

• The first one is based on the Jordan reduction of matrices, and provides a polynomial time
algorithm to compute the square roots of a given matrix. For details, see [3] (chapter VIII, p.
231).

• The second one is based on the Cayley-Hamilton theorem. Let us denote by

χM (λ) = λn + αn−1(M)λn−1 + ... + α1(M)λ + α0(M)

the characteristic polynomial of a matrix M ∈Mn(K).

Since K is a field of characteristic 2, it is easy to prove that (χM (λ))2 = χM2(λ2), and thus
αi(M2) = (αi(M))2 (0 ≤ i ≤ n− 1).

Suppose now that A satisfies A2 = B for a given B. Then, from the Cayley-Hamilton theorem:

χA(A) = An + αn−1(A) ·A + ... + α1(A) ·A + α0(A) · I = 0.

14

Hence:

A
(√

α1(B) · I +
√

α3(B) ·B +
√

α5(B) ·B2 + . . .
)

=
√

α0(B) · I +
√

α2(B) ·B +
√

α4(B) ·B2 + . . .

If we make the assumption that
√

α1(B) ·I +
√

α3(B) ·B+ . . . is invertible, we obtain the following
formula to compute A:

A =
(√

α0(B) · I +
√

α2(B) ·B + . . .
)(√

α1(B) · I +
√

α3(B) ·B + . . .
)−1

and thus
x = s−1

((√
α0(t−1(y)) · I +

√
α2(t−1(y)) · t−1(y) + . . .

)
(√

α1(t−1(y)) · I +
√

α3(t−1(y)) · t−1(y) + . . .
)−1)

Note 1: The first method always works, whereas the second one can be used only for ciphertexts y
such that B = t−1(y) satisfies α1(B) · I + α3(B) ·B + . . . invertible.

Note 2: The scheme can also be used in signature. To sign a message M, the basic idea is to compute
x from y = h(R||M) (as if we were deciphering a message), where h is a hash function and R is a small
pad. If we succeed, (x,R) will be the signature of M. If we do not succeed (because the function is not
a bijection), we try another pad R (for variants and details, see [9], where a similar idea is used).

13 Cryptanalysis of [Cn]

In this section, we describe a polynomial attack against the [Cn] algorithm, which proves that this
scheme is insecure.
The key idea is to use the fact that B = A2 implies AB = BA (whereas two random matrices A and
B do not commute in general).

• We begin by computing (by Gaussian reductions) all the equations of the following type (which
we called ”type (1)” in section 5):∑

γijxiyj +
∑

αixi +
∑

βiyi + δ0 = 0 (1)

The relation AB = BA gives a priori n equations of this type. In fact, when we give explicit
values to the yi variables, we cannot obtain n independent linear equations on the xi variables,
since AB = BA is also true when B = P (A), where P is any polynomial in K[X].

The exact number of independent linear equations coming from AB = BA is given by the following
result of [3]:

Theorem 13.1 The number N of linearly independent matrices that commute with the matrix
B is given by the formula

N = n1 + 3n2 + ... + (2t− 1)nt

where n1, n2, ..., nt are the degrees of the non constant invariant polynomials i1(λ), ..., it(λ) of
B.

(See [3], chapter VI, for the definition of the invariant polynomials, and chapter VIII for a proof
of the theorem.)

In particular, we have n ≤ N ≤ n2, with N ' n in most of the cases.

• It remains – a priori – to perform an exhaustive search on ' n variables to end the attack. In
fact, we have made some simulations (see table 7 below) that suggest that there also exist many
equations of type (2) (defined in section 5), and type (4) defined by:∑

γijxiyj +
∑

µijyiyj +
∑

αixi +
∑

βiyi + δ0 = 0 (4)

15

n = 2 n = 3 n = 4

p = 2 10 16

39
10 18

153
17 32

292

p = 3 4 4

28
9 9

89
16 16

271

p = 31 3 3

14
8 8

79
15 15

254

p = 127 3 3

14
8 8

79
15 15

254

Table 7: Number of equations of
type 1 type 4

type 2 for [Cn] over K = GF (p)

Note: For p = 2, on these examples, we obtain (n + 1) (formally) linearly independent equations of
type (1). This can be explained by the fact that – on the field K = GF (2) – the equations B = A2

implies tr(B) =tr(A).

These equations of type (1), (2) and (4) can be found by Gaussian reductions on a polynomial number
of cleartext/ciphertext paris. Therefore, the [Cn] scheme is unlikely to be secure: by using all the found
equations of type (1), (2) and (3), a cleartext will be easily found by Gaussian reductions.

14 A suggestion: the HM scheme

The cryptanalysis of [Cn] described in section 13 uses the fact that A and B commute when B = A2.
In order to avoid that very special algebraix property, we suggest to replace the transformation B = A2

by the equation B = A2 + MA, where M is a secret matrix randomly chosen in Mn(K).
The description of the obtained scheme – called HM – is exactly the same as for [Cn]. As in section 12,
the transformation is generally not one-to-one, but the scheme can be used in a practical way because
– as in the case of [Cn] –, the number of pre-images of a given matrix B remains under a reasonable
limit. Table 8 below illustrates this fact (for a randomly chosen matrix M):

pre-images n = 2 n = 3 n = 4 # pre-images n = 2 n = 3 n = 4
0 6 284 39552 16 0 0 72
1 8 112 12024 17 0 0 0
2 0 42 6576 18 0 0 12
3 0 32 2256 19 0 0 24
4 2 34 1868 20 0 0 24
5 0 0 960 21 0 0 0
6 0 0 972 22 0 0 24
7 0 0 168 23-25 0 0 0
8 0 2 324 26 0 0 36
9 0 0 48 27 0 0 0
10 0 2 144 28 0 0 6
11 0 0 96 29-33 0 0 0
12 0 4 162 34 0 0 4
13 0 0 56 35-39 0 0 0
14 0 0 72 40 0 0 8
15 0 0 48 > 40 0 0 0

Table 8: Repartition of the number of pre-images for HM over K = GF (2)

Note: These results are just ”toy simulations” of [Cn], because if K = GF (2), n must be such that
n2 ≥ 64 in real examples.

16

In order to obtain a practical scheme, one has to be able to solve the equation

A2 + MA = B

for a given matrix B ∈Mn(K).
There indeed exist a polynomial time algorithm to perform this computation (see [3], chapter VIII).
The basic idea of this algorithm is to use the fact that:

B = A2 + MA ⇒ g(A) = 0,

where g(λ) =det(λ2 + λ ·M − B) is a polynomial with scalar coefficients (notice that this property is
a generalization of the Cayley-Hamilton theorem). The equation g(A) = 0 can be solved by using the
Jordan reduction of matrices.

The HM scheme seems to be less vulnerable to attacks based on affine multiple (i.e. on equations such
as those of type (1), (2) or (3)), as shown in table 9 below:

n = 2 n = 3 n = 4

p = 2 10 16

39
3 11

133
3 18

49

p = 3 1 1

14
1 1

11
1 1

18

p = 31 0 0

1
0 0

1
0 0

1

p = 127 0 0

0
0 0

0
0 0

0

Table 9: Number of equations of
type 1 type 4

type 2 for HM over K = GF (p)

However, we have made computations (see table 10 below) showing that equations of type (3) (defined
in section 5) still exist, and also equations of ”type (5)”, defined by:∑

µijxiyj +
∑

νijxixj +
∑

αixi +
∑

βiyi + δ0 = 0 (5)

HM n = 2 n = 3 n = 4
Equations (5) 7 17 31
Equations (3) 9 30 58

Table 10: Number of linearly independent equations
(after replacement of the yi variables by explicit values)

Note: It may be noticed that B = A2 implies the two following identities:{
AB −BA = AMA−MA2 (type (5))
A2B −BA2 = BMA−MAB (type (3))

This explains – in part – the existence of such equations of type (5) and type (3).

The fact that such equations do exist threatens the HM scheme. In fact they make the cryptanalyst
able to distinguish between a random quadratic transformation of Kn2

and a quadratic transformation
corresponding to the HM scheme.
This fact explains that we do not recommend the HM scheme. However, at the present, the existence
of equations of type (5) and type (3) does not seem sufficient to break the scheme. Therefore, the
question of the security of HM remains open...

17

15 Conclusion

Among cryptologists that have studied the problem, two main opinions arise as concerns public key
schemes built with multivariate polynomials. Some of them (in fact the majority) think that most of
these schemes should be vulnerable to attacks based on general principles, still to be found. According
to others (a minority), the status of those many schemes can be compared to the one of most secret
key algorithms: no relative proof of security is known, but the great flexibility for the choice among
the possible variants of the schemes, together with the relative easiness for building efficient schemes
that avoid known attacks, may support a certain confidence in the security of the schemes, at least –
a priori – for those which do not seem too close to known cryptanalytic techniques.
The present article does not settle the question once and for all. Nevertheless, it gives arguments
for both opinions. On the one hand, we have shown how to break some schemes for which no crypt-
analysis had been given before. On the other hand, we have studied some simple and general ideas
(removing equations, adding ones, introducing new variables...) that might – a priori – sensibly enforce
the security of some asymmetric schemes. Interesting mathematical questions naturally arise: better
understanding and detecting orthogonal polynomials, using a non commutative ring of matrices to gen-
erate multivariate equations on a (commutative) field, etc. If we had to take a strong line as concerns
the unbroken schemes, our current opinion is that the most provocative schemes (C∗

−−, C∗
−+, HM)

really seem too close to known cryptanalysis to be recommended, but more complex schemes (such as
HFE−+) may be really secure... However, it is still too soon to have a definitive opinion, and we think
that – above all – the important point is to go further into the understanding of the mysterious links
between mathematics and the concepts of asymmetric cryptography and cryptanalysis.

References

[1] D. Coppersmith, S. Winograd, Matrix Multiplication via Arithmetic Progressions, J. Symbolic
Computation, 1990, vol. 9, pp. 251-280.

[2] J.C. Faugere, Rough evaluation (personal communication).

[3] F.R. Gantmacher, The Theory of Matrices, volume 1, Chelsae Publishing Company, New-York.

[4] H. Imai, T. Matsumoto, Algebraic Methods for Constructing Asymmetric Cryptosystems, Alge-
braic Algorithms and Error Correcting Codes (AAECC-3), Grenoble, 1985, Lectures Notes in
Computer Science no 229.

[5] N. Koblitz, Algebraic Aspects of Cryptography , Algorithms and Computation in Mathematics,
Volume 3, Springer, 1998.

[6] R. Lidl, H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its applications, Volume
20, Cambridge University Press.

[7] T. Matsumoto, H. Imai, Public Quadratic Polynomial-Tuples for Efficient Signature-Verification
and Message-Encryption, Advances in Cryptology, Proceedings of EUROCRYPT’88, Springer-
Verlag, pp. 419-453.

[8] J. Patarin, Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Eurocrypt’88, Ad-
vances in Cryptology, Proceedings of CRYPTO’95, Springer, pp. 248-261.

[9] J. Patarin, Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP) : Two New
Families of Asymmetric Algorithms, Advances in Cryptology, Proceedings of EUROCRYPT’96,
Springer, pp. 33-48.

[10] J. Patarin, Asymmetric Cryptography with a Hidden Monomial, Advances in Cryptology, Pro-
ceedings of CRYPTO’96, Springer, pp. 45-60.

[11] J. Patarin, L. Goubin, Trapdoor One-way Permutations and Multivariate Polynomials, Proceed-
ings of ICICS’97, Springer, LNCS no1334, pp. 356-368.

18

[12] J. Patarin, L. Goubin, Asymmetric Cryptography with S-Boxes, Proceedings of ICICS’97, Springer,
LNCS no1334, pp. 369-380.

19

