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Abstract

The RSA public key cryptosystem is based on a single modular

equation in one variable. A natural generalization of this approach is

to consider systems of several modular equations in several variables.

In this paper we consider Patarin's Hidden Field Equations (HFE)

scheme, which is believed to be one of the strongest schemes of this

type. We represent the published system of multivariate polynomials

by a single univariate polynomial of a special form over an extension

�eld, and use it to reduce the cryptanalytic problem to a system of �m2

quadratic equations in m variables over the extension �eld. Finally, we

develop a new relinearization method for solving such systems for any

constant � > 0 in expected polynomial time. The new type of attack

is quite general, and in a companion paper we use it to break other

multivariate algebraic schemes, such as the Dragon encryption and

signature schemes.

1 Introduction

The problem of developing new public key encryption and signature schemes

had occupied the cryptographic research community for the last 20 years. A

particularly active line of research was based on the observation that solving

systems of modular multivariate polynomial equations is NP-complete. Con-

sider, for example, a public encryption key consisting of n random quadratic

polynomials in n variables over the two element �eld F2. To encrypt an n

bit cleartext, you assign each bit to a variable, and evaluate the n quadratic

polynomials modulo 2. To decrypt this ciphertext, you use it as a right
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hand side and solve the resultant system of n quadratic equations in n un-

knowns. When n = 100, the encryption process is extremely fast, while the

decryption process (by an eavesdropper) seems to be completely infeasible.

The system of equations must contain a trapdoor, whose knowledge

makes it possible to solve the system of equations e�ciently for any right

hand side. The main di�erence between the various multivariate schemes is

the type of trapdoor structure they embed into the published polynomials.

An early example of a multivariate signature scheme was developed by

Ong Schnorr and Shamir [OSS84], and was broken shortly afterwards by

Pollard and Schnorr [PS87]. Fell and Di�e [FD85] published another mul-

tivariate scheme, but observed that it was insecure for any practical key

size. A di�erent type of trapdoor was developed by Matsumoto and Imai

[MI88], but their scheme was shown to be insecure in Patarin [P95]. Shamir

[S93] proposed two multivariate schemes modulo large n = pq, which were

shown to be insecure by Coppersmith Stern and Vaudenay [CSV97]. In

an attempt to revive the �eld, Patarin had developed several new types of

trapdoors. The simplest of his new constructions was the Oil and Vinegar

signature scheme [P97], which was broken by Kipnis and Shamir [KS98]. A

more secure construction was the Dragon encryption and signature schemes,

described in Patarin [P96b] and Koblitz [K98]. A simpli�ed version of this

scheme (called Little Dragon) was broken by Coppersmith and Patarin, but

the original Dragon scheme remained unbroken. The Hidden Field Equa-

tions (HFE) was published in Patarin [P96a], and conjectured by its author

to be the strongest among his various constructions. In spite of extensive

cryptanalytic e�ort, no attacks on the HFE scheme had been published so

far.

In this paper we develop a new cryptanalytic approach and use it to

attack both the HFE scheme (as shown in this paper) and the Dragon scheme

(as shown in a companion paper, due to space limitations). The asymptotic

complexity of the attack is polynomial (when some of the parameters grow to

in�nity while others are kept �xed), but the basic implementation described

in this paper may be impractical for su�ciently large keys. Both the scheme

and the attack can be enhanced in numerous ways, and thus it is too early

to decide whether some variant of the HFE scheme can survive an optimized

version of the attack.

The attack is based on the observation that any given system of n mul-

tivariate polynomials in n variables over a �eld F can be represented by a

single univariate polynomial of a special form over K which is an extension

�eld of degree n over F. We analyse the e�ect of the trapdoor hiding op-
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erations on this representation, and use it in order to translate the original

problem of solving n quadratic equations in n variables over the small �eld

F into a new problem of solving a system of �m2 quadratic equations in

m variables over the large �eld K, where m is a small multiple of n. The

standard linearization technique for solving such systems is to replace any

product of variables xixj by a new variable yij, and to solve the resultant

system of �m2 linear equations in the m2=2 new yij variables. However,

in our attack � < 0:5, and thus the linearization technique creates expo-

nentially many parasitic solutions which do not correspond to solutions of

the original quadratic equations. We overcome this problem by developing

a general new technique (called relinearization) which is expected to solve

random systems of equations of this type in polynomial time for any �xed

� > 0. Since no previously published technique could handle such systems,

we expect the relinearization technique to have additional applications in

cryptanalysis, algorithm design, and operations research.

2 The HFE Scheme

The HFE encryption algorithm was presented by Jacques Patarin at Euro-

crypt '96. It uses a small �eld F with q elements (the recommended choice is

q = 2), and a large extension �eld K of degree n over F (the recommended

choice is n = 128, yielding a �eld K with 2128 elements). The �eld K can be

viewed as a vector space of dimension n over F, and the mapping between

the two representations is de�ned by a basis of n elements !0; : : : ; !n�1 in

K via
Pn�1

i=0 xi!i $ (x0; : : : ; xn�1).

To construct his public key, the user picks a random univariate polyno-

mial P (x) over K of the form

P (x) =
r�1X
i=0

r�1X
j=0

pijx
qi+qj

where r is some small constant which guarantees that the degree of P (x)

is bounded by several thousand (the highest recommended value of r is 13,

which for q = 2 gives rise to a polynomial of degree 8192). The bound on

the degree is required in order to make it possible to invert P (x) e�ciently

(e.g., by using Berlekamp's probabilistic algorithm for solving a univariate

polynomial equation over a �nite �elds).

The univariate polynomial P over K can be expressed as a system of n

multivariate polynomials P1; : : : ; Pn�1 in the n variables x0; : : : ; xn�1 over

3



F. The restricted choice of exponents in P guarantees that all the P 0

is are

homogeneous quadratic polynomials. The trapdoor consists of two random

invertible linear transformations S and T over n-tuples of values in F. The

user applies S to the inputs and T to the outputs of the n multivariate poly-

nomials, and publishes the evaluated homogeneous quadratic polynomials in

n variables, denoted by G0; : : : ; Gn�1.

To solve the published system of quadratic equations with a given cipher-

text as the right hand side, the user applies T�1 to the ciphertext, interprets

the result as an element of K, solves his secret univariate polynomial with

this right hand side, and applies S�1 to the components of the solution.

The attacker cannot use this procedure since he does not know the S and T

transformations. These mixing operations have natural interpretation over

F but not over K, and it is not clear apriori that the n published poly-

nomials over F can be described by a single univariate polynomial G over

K. Even if it exists, it may have an exponential number of coe�cients, and

even if it is sparse, it may have an exponentially large degree which makes

it practically unsolvable.

Remark: In this extended abstract we simplify the original HFE scheme

in several inessential ways. In particular, we consider only homogeneous

polynomials (the attacker can ignore lower degree monomials), and assume

that the representation of K over F is �xed (by using a di�erent representa-

tion, the attacker obtains a di�erent but equally useful version of the secret

key).

3 Univariate Representations of Systems of Mul-

tivariate Polynomials

The starting point of our attack is the observation that ANY system of n

multivariate polynomials of bounded degree d in n variables over a �eld F

can be represented as a single sparse univariate polynomial of a special form

over an extension �eld K of degree n over F.

We �rst consider the case of linear multivariate mappings. The mapping

x! xq is a linear function over K, and thus any mapping of the form x!Pn�1
i=0 aix

qi for �xed coe�cients a0; : : : ; an�1 in K is also a linear mapping.

We need the converse of this result:

Lemma 3.1 : Let A be a linear mapping from n-tuples to n-tuples of values

in F. Then there are coe�cients a0; : : : ; an�1 in K such that for any two n
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tuples (x0; : : : ; xn�1) and (y0; : : : ; yn�1) of elements in F, (y0; : : : ; yn�1) =

A(x0; : : : ; xn�1) if and only if y =
Pn�1

i=0 aix
qi, where x =

Pn�1
i=0 xi!i and

y =
Pn�1

i=0 yi!i are the elements of K which correspond to the two n-tuples

over F.

Proof: There are q(n
2) n � n matrices over F and (qn)n sums of n

monomials over K, and thus the number of linear mappings and the number

of polynomials of this form is identical. Each polynomial represents some

linear mapping, and two distinct polynomials cannot represent the same

mapping since their di�erence would be a non zero polynomial of degree qn�1

with qn roots in a �eld. Consequently, each linear mapping is represented

by some univariate polynomial of this type over the extension �eld. 2

We now generalize this characterization from linear functions to any

system of multivariate polynomials:

Lemma 3.2 Let P0(x0; : : : ; xn�1); : : : ; Pn�1(x0; : : : ; xn�1) be any set of n

multivariate polynomials in n variables over F. Then there are coe�cients

a0; : : : ; aqn�1 inK such that for any two n tuples (x0; : : : ; xn�1) and (y0; : : : ; yn�1)

of elements in F, yj = Pj(x0; : : : ; xn�1) for all 0 � j � n� 1 if and only if

y =
Pqn�1

i=0 aix
i, where x =

Pn�1
i=0 xi!i and y =

Pn�1
i=0 yi!i are the elements

of K which correspond to the two vectors over F.

Proof: We can again use counting arguments, but we prefer a di-

rect proof which better characterizes the generated univariate polynomials.

Without loss of generality, we can assume that the �rst basis element is

!0 = 1. The mapping (x0; : : : ; xn�1) ! (xi; 0; : : : ; 0) over F is linear, and

thus has a univariate polynomial representation over K. To represent the

mapping (x0; : : : ; xn�1) ! (
Qn�1

i=0 xcii ; 0; : : : ; 0), multiply all the univariate

polynomials which represent the mappings (x0; : : : ; xn�1) ! (xi; 0; : : : ; 0),

with their multiplicities ci (note that this can only be done at the �rst co-

ordinate, which corresponds to the basis element !0 = 1; at at any other

coordinate k we would get a power of !k which would spread the resultant

monomial all over the vector). By summing the univariate polynomial repre-

sentations of such monomials with appropriate coe�cients we can represent

the mapping de�ned by any multivariate polynomial in the �rst coordinate

of the vector, and zeroes elsewhere. To move the multivariate polynomial to

the k-th coordinate of the vector, we multiply all the coe�cients of its uni-

variate representation (which are elements ofK) by !k. Finally, to represent

a system of n (unrelated) multivariate polynomials at the n coordinates of
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the vector, we construct a representation of each polynomial at the �rst co-

ordinate, shift it to its proper coordinate and add all the resultant univariate

polynomials. 2.

An important corollary of this proof is:

Lemma 3.3 : Let C be any collection of n homogeneous multivariate poly-

nomials of degree d in n variables over F. Then the only powers of x which

can occur with non-zero coe�cients in its univariate polynomial represen-

tation G(x) over K are sums of exactly d (not necessarily distinct) powers

of q: qi1 + qi2 + : : : + qid. If d is a constant, then G(x) is sparse, and its

coe�cients can be found in polynomial time.

Proof: Mappings de�ned by a single variable are linear functions, and

thus can be represented as the sum of monomials of the form xq
i

, and each

monomial contains a single power of q. When we multiply d such polynomi-

als and evaluate the result, we get only powers of x which are the sums of

exactly d powers of q. Since G(x) is the sum of such polynomials (multiplied

by constants from K), the same is true for G(x).

The degree of G(x) over K can be exponentially large, but at most

O(nd) of its coe�cients can be non-zero, and for any �xed value of d this

is a polynomial number. Once we know that a sparse univariate polyno-

mial representation exists, we can �nd its coe�cients in polynomial time by

interpolation based on su�ciently many input/output pairs. 2

The problem of solving a system of multivariate quadratic equations

over a �nite �eld is known to be NP complete. This lemma implies that

the problem of solving a single univariate polynomial equation over a �nite

�eld is also NP complete, if the polynomial is represented by the list of its

non zero coe�cients. If the polynomial is represented by the list of ALL its

coee�cients, the problem can be solved in probabilistic polynomial time by

Berlekamp's algorithm.

Consider the published system of quadratic polynomials G0; : : : ; Gn�1 in

x0; : : : ; xn�1. Each polynomial can be written as the quadratic form xGix
t

where Gi is an n�n matrix of coe�cients 1, x is the row vector of variables

(x0; : : : ; xn�1), and xt is its transpose. However, our attack does not use

this standard representation. Instead, it uses Lemma 3.3 to e�ciently �nd

1The matrix representation of quadratic forms is not unique, and has to be symmetrized

by averaging the matrix and its transpose. In �elds of characteristic 2 we just add the

matrix and its transpose, (since we cannot divide by 2), and use the result. More details

on these �ne points will be given in the �nal version of the paper.
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the following representation of the public key:

G(x) =
n�1X
i=0

n�1X
j=0

gijx
qi+qj = xGxt where G = [gij ] and x = (xq

0

; xq
1

; : : : ; xq
n�1

)

Note that this is an unusual type of quadratic form since the vector x con-

sists of related rather than independent variables, and that x is a vector of

elements from F whereas x is a vector of elements from K. It is this repre-

sentation which makes it possible to analyse the secret hiding operations in

a clean mathematical form.

4 The e�ect of S and T on P

Due to their special form, both the original polynomial P (x) over K chosen

by the user and the new polynomial G(x) over K derived by the cryptana-

lyst from the public key can be represented by the (non standard) quadratic

forms xPxt and xGxt. The linear mappings S and T can be represented as

univariate polynomials, and thus the public key is represented by the uni-

variate polynomial composition G(x) = T (P (S(x))) over K. We rewrite

this equation as T�1(G(x)) = P (S(x)), where S has the form S(x) =Pn�1
i=0 six

qi and T�1 (which is also a linear mapping) has the form T�1(x) =Pn�1
i=0 tix

qi . Our goal now is to study the e�ect of the polynomial com-

positions T�1(G(x)) and P (S(x)) on the matrices of their (non standard)

quadratic form representations.

Theorem 4.1 : The matrix of the quadratic form in x which represents

the polynomial composition T�1(G(x)) is
Pn�1

k=0 tkG
�k where G�k is obtained

from the n� n matrix representation of G by raising each one of its entries

to the power qk in K, and cyclically rotating forwards by k steps both the

rows and the columns of the result. The matrix of the quadratic form in

x which represents the polynomial composition P (S(x)) is WPW t in which

W = [wij ] is an n � n matrix de�ned by wij = (sj�i)
qi , where j � i is

computed modulo n.

Proof (Sketch): The polynomial representation of T�1(x) is
Pn�1

k=0 tkx
qk

and the polynomial representation of G(x) is
Pn�1

i=0

Pn�1
j=0 gijx

qi+qj . Their

polynomial composition can be evaluated by using the fact that raising sums
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to the power qi is a linear operation:

T�1(G(x)) =
n�1X
k=0

tk(
n�1X
i=0

n�1X
j=0

gijx
qi+qj )q

k

=
n�1X
k=0

tk

n�1X
i=0

n�1X
j=0

(gij)
qkx(q

i+qj)qk

The exponents of q can be reduced modulo n since xq
n

= xq
0

= x, and the

summation indices can be cyclically rotated if they are computed modulo n:

T�1(G(x)) =
n�1X
k=0

tk

n�1X
i=0

n�1X
j=0

(gij)
qkxq

i+k+qj+k =
n�1X
k=0

tk

n�1X
i=0

n�1X
j=0

(gi�k;j�k)
qkxq

i+qj

The matrix of the quadratic form representation of this polynomial in terms

of x is exactly G0 =
Pn�1

k=0 tkG
�k, where the (i; j)-th entry of G�k is g

qk

i�k;j�k,

as speci�ed.

The proof of the other type of composition is similar:

P (S(x)) =
n�1X
i=0

n�1X
j=0

pij(
n�1X
k=0

skx
qk)(q

i+qj) =
n�1X
i=0

n�1X
j=0

pij(
n�1X
u=0

sux
qu)q

i

)(
n�1X
v=0

svx
qv)q

j

)

Again we use linearity and cyclic index shifting to evaluate P (S(x)) as:

n�1X
i=0

n�1X
j=0

pij(
n�1X
u=0

sq
i

u x
qu+i)(

n�1X
v=0

sq
j

v x
qv+j ) =

n�1X
i=0

n�1X
j=0

pij(
n�1X
u=0

s
qi

u�ix
qu)(

n�1X
v=0

s
qj

v�jx
qv)

By rearranging the order of the summation and the multiplied terms we get:

P (S(x)) =
n�1X
u=0

n�1X
i=0

n�1X
j=0

n�1X
v=0

xq
u

s
qi

u�ipijs
qj

v�jx
qv = xWPW txt

where W is the speci�ed matrix. 2

5 Recovering the Secret Key from the Public Key

The attack on a given public key is based on the matrix equation over K,

G0 =WPW t, which we call the fundamental equation. The matrix G can be

easily computed by representing the public key as a univariate polynomial

over K, and then representing the univariate polynomial as the quadratic

form xGxt. All the G�k variants of G can be computed by raising the

entries of G to various powers and cyclically rotating its rows and columns.
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We can thus consider G0 =
Pn�1

k=0 tkG
�k as a matrix whose entries are linear

combinations of known values with unknown coe�cients t0; : : : ; tn�1 from

K. The matrix P is mostly known, since only the top left r� r block in the

n�n matrix can be non zero, and r << n. The matrix W is unknown, but

there are many relations between its n2 entries since they are all determined

by just n parameters via wij = s
qi

j�i. Our goal is to use all these observations

in order to solve the fundamental equation in polynomial time.

5.1 Recovering T

We �rst describe the process of recovering t0; : : : ; tn�1 from the fundamental

equation G0 =WPW t, where each entry in G0 is a linear combination of the

tk variables. The matrix P contains at most r non zero rows, and thus both

its rank and the rank of WPW t cannot exceed r. For random choices of

tk values the expected rank of the evaluated G0 matrix is close to n. What

makes the correct choice of tk values special is that they force G0 to have

the unusually small rank r. To simplify the asymptotic analysis, we assume

that r is a constant and n grows to in�nity, and argue that the attack should

run in expected polynomial time (even though we cannot formally prove this

claim).

The basic approach is to express this rank condition as a large number of

equations in a small number of variables. Consider the matrix G0 evaluated

with the correct choice of tk values. Its rank is at most r, and thus its left

kernel (de�ned as the set of all row vectors ex over K satisfying exG0 = 0) is a

n�r dimensional linear subspace. We thus expect to �nd in it n�r linearly
independent vectors ex1; : : : ; exn�r even if we force the �rst n � r entries in

each exk to have some arbitrarily speci�ed values. The remaining r entries

in each one of the n� r vectors exk are de�ned as new variables. Each vector

equation exG0 = 0 can be viewed as n scalar equations over K, and thus we

get a total of n(n� r) equations in the r(n� r) + n variables (the original

tk coe�cients in G0 and the new unspeci�ed entries in all the exk vectors).

The bad news is that the equations are quadratic, and we don't know

how to solve large systems of quadratic equations in polynomial time (in

fact, this was the original problem of deriving cleartexts from ciphertexts!).

The good news is that instead of a marginally de�ned system of n equations

in n variables, we get an overde�ned system of about n2 equations in about

rn variables where r << n.

Consider the general problem of solving e randomly generated homo-

geneous quadratic equations in m variables. The well known linearization
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technique for solving such equations is to replace any product of two vari-

ables xixj for i � j by a new variable yij. The total number of new variables

is n(n + 1)=2. Each quadratic equation in the original x variables can be

rewritten as a linear equation in the new y variables. If the number of equa-

tions satis�es e � n(n+1)=2, we expect the system to be uniquely solvable,

but if e << n(n + 1)=2, we expect the linear system to have an exponen-

tial number of parasitic y solutions which do not correspond to any real x

solution.

Unfortunately, in our problem we have m � rn variables but only

e � �m2 quadratic equations where � = 1=r2 is smaller than 1=2, and thus

the linearization method would fail. In the next subsection we describe a

novel heuristic technique called relinearization which is expected to solve

such systems of quadratic equations for any �xed � > 0 in polynomial time.

The technique seems to have many other applications in cryptography, op-

timization, and computer algebra, and should be studied carefully.

5.2 The Relinearization Technique

Consider a system of �m2 homogeneous quadratic equations in the m vari-

ables x1; : : : ; xm. We rewrite it as a new system of �m2 linear equations in

the (approximately) m2=2 new variables yij = xixj for i � j. Its solution

space is a linear subspace of expected dimension (1=2 � �)m2, and each so-

lution can be expressed as a linear function of (1=2� �)m2 new variables zk.

Such a parametric solution can be e�ciently found by Gauss elimination.

Most of the yij solutions found in this way do not correspond to any

possible xi solutions. We want to add additional constraints which relate

the various yij variables to each other in the way implied by their de�nition

as yij = xixj . To do this, consider any 4-tuple of indices 1 � a � b � c �
d � m. Then xaxbxcxd can be parenthesized in three di�erent ways:

(xaxb)(xcxd) = (xaxc)(xbxd) = (xaxd)(xbxc) =) yabycd = yacybd = yadybc

There are about m4=4! di�erent ways to choose sorted 4-tuples of distinct

indices, and each choice gives rise to 2 equations 2. We thus get aboutm4=12

quadratic equations in the m2=2 yij variables, and it is not di�cult to prove

that they are linearly independent (even though they are algebraically de-

pendent). We can lower the number of variables to (1=2� �)m2 by replacing

2There are additional 4-tuples of non-distinct indices, which give either one or no

additional equations. We ignore them in our asymptotic analysis.
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each one of the yij variables by its parametric representation as a linear

combination of the new zk variables.

The relinearization technique is based on the observation that the new

m4=12 quadratic equations in the new (1=2 � �)m2 zi variables can be

linearized again by replacing each product zizj for i � j by a new vari-

able vij. The new system has m4=12 linear equations in ((1=2 � �)m2)2=2

vij variables. We expect this linear system to be uniquely solvable when

m4=12 � ((1=2��)m2)2=2. This is satis�ed whenever � � 1=2�1=
p
6 � 0:1,

which is one �fth of the number of equations required by simple linearization.

Two small demonstrations of this procedure can be found in the ap-

pendix. There are many possible optimizations of the basic technique: we

can use relinearization recursively, consider additional constraints, etc. For

example, there are about m6=6! possible choices of indices in xaxbxcxdxexf ,

and each one gives rise to 14 di�erent equations of degree 3 in the (1=2��)m2

parameters zi. If we relinearize every product of the form zizjzk for i � j �
k, we get about 14m6=720 linear equations in ((1=2��)m2)3=6 new variables,

which can be solved whenever � � 0:008. In the full version of this paper

we show that for any �xed � > 0 there is a relinearization scheme which

is expected to solve in polynomial time random systems of �m2 quadratic

equations in m variables.

We now return to the original problem of extracting T from the funda-

mental equation G0 =WPW t. Since we have about n2 quadratic equations

in about rn variables, we get � � 1=r2. The worst case happens when q = 2

and r = 13, yielding � � 0:006, which is marginally smaller than the thresh-

old stated above. We thus have to use the relinearization scheme which

considers products of 8 xi values, and to solve a huge system of O(n8) lin-

ear equations in O(n8) variables, which is polynomial but impractical. For

larger �elds F, both r and n drop considerably if we keep �xed both the

degree qr of the secret polynomial and the size qn of the cleartext space (for

example, when we replace F2 by F7, r drops from 13 to 4 and n drops from

100 to 36). The smaller r increases � and makes it possible to use simpler

relinearization schemes which result in smaller systems of O(n6) or even

O(n4) equations, and the smaller n make their solution more feasible. The

practical details are messy, and will be omitted from this extended abstract.

One �nal complication is the fact that the quadratic equations have mul-

tiple solutions (due to two symmetries of the fundamental equation: we can

raise all the ti to the power q and cyclically rotate the vector to the right,

and we can multiply all of them by a common constant). Any linearized

technique to �nd these solutions will necessarily return the n dimensional
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linear subspace they span. Almost all the points on this subspace are par-

asitic solutions, which do not solve the original quadratic equations, and

cannot be used to break the scheme. To avoid this problem, we want to

force the system of quadratic equations to have a unique solution. The

standard way to do this is to choose random additional constraints until

only one of the original solutions remains. However, the equations are over

the large �eld K, and each additional equation kills all but 1=qn � 2�100

of the original solutions, which is too severe. Instead, we can reexpress the

quadratic equations over the large �eld K as quadratic equations over the

small �eld F, and arbitrarily �x the values of some of the new variables in F.

Each additional choice reduces the number of solutions by the small factor q,

and with reasonable probability the number of solutions will pass through 1.

Working over F instead of K increases the number of variables by another

factor of n, but we can avoid this higher complexity by translating to F only

the O(n) parameters of the linear solution space rather than the O(n8) vari-

ables of the linearized problem. We can then express some of the algebraic

relationships between the O(n8) linearized variables as quadratic equations

in the new O(n2) variables over F. The number of quadratic equations we

get exceeds the square of the number of new variables, and thus we can solve

them e�ciently by simple linearization.

5.3 Recovering S

The last part of the attack recovers S and P when T is known. The matrix

G0 =
Pn�1

k=0 tkG
�k in the fundamental equation G0 = WPW t is now a com-

pletely known matrix. The matrix P contains at most r non zero rows, and

thus both its rank and the rank of G0 = WPW t cannot exceed r. Assume

without loss of generality that the rank of P is exactly r, and that the rank

of W is exactly n. Let v1; : : : ; vn�r be a basis for the left kernel of G
0. Since

W t is invertible the left kernel of WPW t is equal to the left kernel of WP .

The left kernel of P consists of exactly those vectors which are zero in their

�rst r entries, and thus each vi is mapped by W to a vector of this form.

Since G0 is known, its left kernel can be easily computed, and each one of

the n � r basis vectors gives rise to r equations in the unknown entries of

W .

The problem seems to be underde�ned, with r(n � r) linear equations

in n2 variables. We can reduce the number of variables from n2 to n by

replacing each wij by s
qi

j�i, but then we get nonlinear equations. The crucial

observation is that these nonlinear equations over K become linear if we

12



reinterpret them as equations over F: Replace each si by
Pn�1

j=1 sij!j where

the sij is a new set of n2 variables over F. Each s
qi

j�i becomes a linear com-

bination of the suv variables, and each equation over K becomes a collection

of n linear equations over F. Altogether there are r(n�r)n equations in the

n2 new variables over F, and for any r > 1 the system is greatly overde�ned

since r(n� r)n >> n2. The solution of the homogeneous equations can be

de�ned at most up to multiplication by a constant, but as explained earlier

any solution of this type is satisfactory.

A Appendix: A Relinearization Example

We demonstrate the complete relinearization technique on a toy example of

5 random quadratic equations in three variables x1; x2; x3 modulo 7:

3x1x1 + 5x1x2 + 5x1x3 + 2x2x2 + 6x2x3 + 4x3x3 = 5

6x1x1 + 1x1x2 + 4x1x3 + 4x2x2 + 5x2x3 + 1x3x3 = 6

5x1x1 + 2x1x2 + 6x1x3 + 2x2x2 + 3x2x3 + 2x3x3 = 5

2x1x1 + 0x1x2 + 1x1x3 + 6x2x2 + 5x2x3 + 5x3x3 = 0

4x1x1 + 6x1x2 + 2x1x3 + 5x2x2 + 1x2x3 + 4x3x3 = 0

After replacing each xixj by yij, we solve the system of 5 equations in 6

variables to obtain a parametric solution in a single variable z:

y11 = 2+5z; y12 = z; y13 = 3+2z; y22 = 6+4z; y23 = 6+ z; y33 = 5+3z

This single parameter family contains 7 possible solutions, but only two of

them also solve the original quadratic system. To �lter out the parasitic

solutions, we impose the additional constraints: y11y23 = y12y13, y12y23 =

y13y22, y12y33 = y13y23. Substituting the parametric expression for each yij,

we get:

(2+5z)(6+z) = z(3+2z); z(6+z) = (3+2z)(6+4z); z(5+3z) = (3+2z)(6+z)

These equations can be simpli�ed to:

3z2 + z + 5 = 0; 0z2 + 4z + 4 = 0; 1z2 + 4z + 3 = 0

The relinearization step introduces two new variables z1 = z and z2 = z2,

and treats them as unrelated variables. We have three linear equations in

13



these two new variables, and their unique solution is z1 = 6, z2 = 1. Working

backwards we �nd that y11 = 4, y22 = 2, y33 = 2, and by extracting their

square roots modulo 7 we �nd that x1 = �2, x2 = �3, x3 = �3. Finally,

we use the values y12 = 6 and y23 = 5 to combine these roots in just two

possible ways to obtain x1 = 2, x2 = 3, x3 = 4 and x1 = 5, x2 = 4, x3 = 3,

which solve the original quadratic system.

A more interesting example, which we do not describe in full in this

extended abstract, consists of 5 randomly generated homogeneous quadratic

equations in 4 variables, Note that this is barely larger than the minimum

number of equations required to make the solution well de�ned. The number

of linearized variables yij = xixj for 1 � i � j � 4 is 10, and the solution

of the system of 5 linear equations in these 10 variables can be de�ned by

a�ne expressions in 5 new parameters zi. There are 20 equations which can

be derived from fundamentally di�erent ways of parenthesizing products of

4 xi variables:

y12y34 = y13y24 = y14y23

y11y23 = y12y13; y11y24 = y12y14; y11y34 = y13y14

y22y13 = y12y23; y22y14 = y12y24; y22y34 = y23y24

y33y12 = y13y23; y33y14 = y13y34; y33y24 = y23y34

y44y12 = y14y24; y44y13 = y14y34; y44y23 = y24y34

y11y22 = y12y12; y11y33 = y13y13; y11y44 = y14y14

y22y33 = y23y23; y22y44 = y24y24; y33y44 = y34y34

When we substitute the a�ne expressions in the 5 new zi parameters and

relinearize it, we get 20 linear equations in the 5 zi and their 15 products

zizj for 1 � i � j � 5, which is just big enough to make the solution unique

(up to � sign) with reasonable probability. 2
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