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Abstract. We consider the basic version of the asymmetric cryptosys-
tem HFE from Eurocrypt 96.

We propose a notion of non-trivial equations as a tentative to account for
a large class of attacks on one-way functions. We found equations that
give experimental evidence that basic HFE can be broken in expected
polynomial time for any constant degree d. It has been independently
proven by Shamir and Kipnis [Crypto’99].

We designed and implemented a series of new advanced attacks that are
much more efficient that the Shamir-Kipnis attack. They are practical
for HFE degree d ≤ 24 and realistic up to d = 128. The 80-bit, 500$
Patarin’s 1st challenge on HFE can be broken in about 262.

Our attack is subexponential and requires n
3
2 log d computations. The

original Shamir-Kipnis attack was in at least nlog2 d. We show how to im-
prove the Shamir-Kipnis attack, by using a better method of solving the
involved algebraical problem MinRank. It becomes then in n3 log d+O(1).

All attacks fail for modified versions of HFE: HFE− (Asiacrypt’98),
HFEv (Eurocrypt’99), Quartz (RSA’2000) and even for Flash (RSA’2000).

Key Words: asymmetric cryptography, finite fields, one-way functions, Hidden
Field Equation, HFE problem, basic HFE, MinRank problem, short signatures.

1 Introduction

The HFE trapdoor function Eurocrypt 96 [14], defined in 4, is one of the most
serious alternative trapdoor functions. It generalizes the previous Matsumoto-
Imai cryptosystem from Eurocrypt 88 [10] broken by Patarin in [13, 14].

HFE operates over finite fields. In this paper we restrict to the basic version
of HFE, and to fields of characteristic 2. Thus we study a trapdoor function
F : GF (2n) → GF (2n). We focus on the cracking problem of computing the
inverse of the basic HFE encryption function, without trying to recover it’s secret
key.

In the section 2 we attempt to base a notion of a one-way function on algebraic
criteria. We propose a ”boosting model” which is nothing else that a kind of se-
mantics of all deterministic cryptographic attacks. This approach, subsequently



narrowed down, proves particularly relevant to HFE attacks. The security is ex-
pressed in terms of properties of implicit equations that relate the inputs xi and
the outputs yi of a function. An equation substituted with a given output value
may, or may not, produce a new non-trivial equation on xi. New equations boost
the set of known linearly independent equations on the xi, and at some point
they should allow to compute the actual values of the xi.

There is no doubt that our problem is closely related to polynomial elimi-
nation (Gröbner bases, XL algorithm [21]). Thus in section 3 we study the NP-
complete problem of solving multivariate quadratic equations called sometimes
MQ. A simple idea of linearizing and applying Gauss elimination can indeed be
seen as eliminating equations (simple case of Gröbner bases algorithm), however
we reinterpret it in section 3 in terms of implicit equations.

We distinguish between this ’elimination paradigm’ and our approach called
’implicit equations paradigm’. Those methods ar different and complementary.
We don’t combine equations formally, trying to eliminate among all equations
that we could construct within some size limitation. Instead of that, the problem
is to find special subsets of such equations, that for algebraical reasons might be
related. We are not limited (at all) by the size the equations, but only the size
of the subset we selected (!).

The whole idea that it is interesting to do so, is the object of this paper. We
may go back to the cryptanalysis of the Matsumoto-Imai cryptosystem described
briefly in 4.1, to understand that algebraical reasons may suggest (or prove) the
existence of some type of equations. The idea had several generalizations, such
as the affine multiple attack by Jacques Patarin [13, 9] and other described here
and in [4]. It was already known since [14] that some such equations will exist
for basic HFE. In the present paper we show precisely what kind of equations
exist and how to use them in realistic attacks.

Though it is very clear that the equations we have found in the present
paper, exist for algebraical reasons, we were not able to explain them. They
have been found on much more experimental basis, and it remains an open
problem to understand them better. We did several months of extended computer
simulations (section 5.6), to find memory-efficient types of equations that gave
what is now the best known attack on basic HFE.

In the whole process of solving equations by finding other equations, we
had to distinguish different types of equations. We denote them by expressions
in x, y,X, Y , see section 5.1). We also distinguish several kinds of equations in
terms of both their behaviour and a way they have been computed. Thus we had
to invent some special vocabulary and notations, especially that some notions
are informal.

A glossary of words that have special meaning in this paper, usually ”double-
quoted”, along with common notations, is compiled at the end of the paper.

The section 5 shows precisely several classes of equations we have found and
their immediate applications in an attack. Thus we get a strong experimental
evidence that basic HFE can be broken in expected polynomial time if the degree



d is constant. The same result has just been independently found by Shamir and
Kipnis at Crypto’99 [23].

We show that basic HFE is not secure for degree d ≤ 24, while the original
paper [14] suggested the HFE degree d = 17 as secure enough. Therefore, as we
show in 5.10, in order to break the 500$ HFE challenge with d = 96 we need 262

computations and 33 Tb of memory.
We introduced successive improvements to this attack. First, it is in fact

possible to recover, recompose and use only parts of the equations (”reconcilia-
tion attack”) - section 6.1. Secondly, the ”distillation attack” of section 6.1-6.3
manages also to remove other, ”interference” equations that unfortunately ap-
pear when the parts are too small. The final output is a method that uses very
long equations without ever computing them, which dramatically reduces the
memory requirements for Challenge 1 to 390 Gb.

In the section 7.1 we estimate the asymptotic complexity of our attacks. It is
polynomial for a fixed HFE degree d and subexponential in general. If we go back
to the Shamir-Kipnis attack on (basic) HFE from Crypto’99 [23], though it is
very different, it gives similar results with much worse complexity. In the section
8 we introduce an improved version of it, that gives the asymptotic complexity
similar that our attacks.

It is not true that HFE is broken. All attacks may have substantial complexity
and completely fail for any modified version of HFE, see section 10.

2 Algebraic Paradigm for One-wayness

Let’s consider any attack on any deterministic one-way function which we sup-
pose described as a set of explicit arithmetic formulae yi = Fi(x1, . . . , xn). We
point out that following the first Gödel theorem, such equations can be written
for any deterministic algorithm. The answer x we are looking for is also seen as
a set of equations, though much simpler xi = . . ., which a hypothetical attack
would evaluate to. Therefore any deterministic attack, is a series of transfor-
mations that starts from somewhat complex equations and eventually produces
simpler ones. We call these ”boosting transformations” as they boost the num-
ber of all equations with a know value, and produce simpler and therefore more
”meaningful” equations. But what are simple or complex equations ? We must
adopt a necessarily restrictive approach with a notion of complexity.

One possible notion of complexity is the non-linear degree. Every boolean
function is a multivariate polynomial over GF (2) (algebraic normal form). It
seems to be an appropriate measure of complexity, especially to study HFE,
based itself on bounded degree (quadratic) equations.

We would like to define a secure cryptographic primitive. However we don’t
say that they are no attacks, neither that all the attacks fail, which means little.
We try to formalize how they fail.

The random oracle paradigm would be to ignore that the function formulae
exist. It is used for a symmetric primitives but is meaningless for asymmetric



primitives. Indeed, they are usually described by some strikingly simple equa-
tions e.g. x 7→ xe. Thus, after all, this belief about every attack being kind of
”completely puzzled by the irreducible randomness of answers to all possible
questions”, maybe it is not necessary at all to achieve security ?

We can even admit that some attacks exist, as long as they are hard to find
and we cannot know the result before we executed the whole attack (experimen-
tal attacks without theoretical basis). For such general attacks, we suppose them
to fail in most cases, even if they always do output some new equations. In fact
it’s very likely that we get only equations that are trivial combinations of those
we have known and/or of higher degree that those given. Such a primitive would
be considered secure.

Definition 2.0.1 (A one-way function - very informal). is a function that
admits only trivial equations.

It is an attempt to give an algebraic definition of a one-way function. Still
we need to precise what are ”trivial” and ”non-trivial” equations.

Definition 2.0.2 (Trivial equations - informal). are explicit bounded de-
gree polynomials over the equations Yi and variables xi that does not exceed a
given maximum sizemax (or of polynomial size) and such that their degree as a
function of xi does not collapse.

Definition 2.0.3 (Non-trivial equations -informal). are also bounded com-
binations of the Yi and xi, limited in size all the same, but their degree does
collapse.

These equations, though could be generated explicitly are obtained in an
attack in an implicit way. We solve equations on their coefficients that come
from the expressions of the Yi or from a series of (cleartext,ciphertext) pairs
(x, y).

3 Solving Quadratic Boolean Equations, MQ over GF(2)

In this paper we always consider nb quadratic equations yi = Yi(x1, . . . , xna
)

with na variables xi ∈ GF (q). If otherwise stated na = nb = n and q = 2.

The general problem of solving quadratic equations is called MQ and proved
NP-complete, in [18, 7], which guarantees (only) worst-case security. However in
the current state of knowledge, the MQ problem is hard even in average case,
see [21] and about as hard as the exhaustive search in practice for n < 100 [21].

The Gaussian reduction that eliminates variables, can also be applied to
MQ if nb > na(na − 1)/2. Thus the so called linearization puts zi = xixk and
eliminates the new variables. We say rather that it implies the existence of at
least nb − na(na − 1)/2 equations of the form:∑

αiyi =
∑

βixi + γ



We call it equations of ”type X+Y” later on, and the important point is
that the fact that nb > na(na − 1)/2 implies their existence, but the reverse is
obviously false. They may exist even if for small nb and it’s always interesting
to check if they do.

4 The HFE Problem

We give a simple mathematical description of the so called ”HFE problem”.
More details on various aspects of HFE can be found in [14, 5, 4, 15, 18].

The HFE problem defined below is defined as finding one reverse image for a
basic version of the HFE cryptosystem exactly as initially proposed at Eurocrypt
1996 [14]. First we recall two basic facts from [14]:

Fact 4.0.4. Let P be a polynomial over GF (qn)of the special form:

P (a) =
∑

i

αi · aqsi+qti
. (1)

Then P can be written as n multivariate quadratic equations equations over
the ai ∈ GF (q).

Fact 4.0.5 (HFE trapdoor). If P is a polynomial of degree at most d that
P−1({b}) can be computed in time d2(ln d)O(1)n2 GF (q) operations, see [14, 8].

Definition 4.0.6 (HFE Problem). Let S and T be two random secret bijec-
tive and affine multivariate variable changes. Let

F = T ◦ P ◦ S. (2)

We believe that it’s difficult to compute F−1 as far as it’s decomposition
F−1 = S−1 ◦ P−1 ◦ T−1 remains secret.

4.1 Examples of HFE Problem

The simplest non-linear case of basic HFE is P = aqα+qβ

. It is called the
Matsumoto-Imai cryptosystem (or C∗) [10] from Eurocrypt’88. A toy example
of public equations can be found in [13].

It has been broken 7 years after the proposal [13]. The cryptanalysis ([13, 9,
14]) shows that there exist at least 2/3n of what we describe later as equations
of ”type XY ”, and what are simply implicit bi-affine equations involving input
and output variables xi and yi:∑

αijxiyj +
∑

βixi +
∑

γjyj + δ = 0

The Attack is as follows: first we recover these equations by Gaussian elimination
on their coefficients. Then we recover x substituting y in these equations.



4.2 HFE Challenge 1

It has been proposed by Jacques Patarin in the extended version of [14].
The HFE polynomial is of degree d = 80 over GF (2n) with n = 80 bits.

The price of 500$ is promised for breaking the signature scheme that amounts
to computing F−1 three times. An example of F can be downloaded from [5].

5 Implicit Equations Attack

5.1 Types of equations

We have a convention to describe an equation type:

1. The equation type is a union of terms in formal variables x, y,X, Y , for
example: XY ∪ x2.

2. A term xkyl denotes all the terms of degree exactly k in all the xi, i = 1..na

and of degree exactly l in yi, i = 1..nb.
Important: If the variables are in GF (q), the degrees must be in [0..q − 1].

3. The capital X, Y describe equation sets that include all the lower degree
terms. For example: XY ∪ x2 ≡ 1 ∪ x ∪ y ∪ xy ∪ x2.

4. If necessary we distinguish by {XY ∪ x2} the set of terms used in the corre-
sponding equation type, while [XY ∪x2] denotes the set of equations of this
type.

5.2 Invariant Equations

Definition 5.2.1 (Invariant equations). Set of equations with their set of
terms invariant modulo any bijective affine S and T variable changes.

For example [X2Y ] is invariant but not [x2y]. The definition states that the
sets of terms involved are invariant, that implies that the number of equations
that exist for a given type is invariant (but each of the equations is invariant).

If the equations are invariant, the number of equations of a given type will
be the same for any output value. Thus we can assume that we are solving
F−1(y) with y = 0 without loss of generality. We make this assumption for all
subsequent attacks. The problem of the invariant equations of higher degree is
that they are still at least quadratic after substituting y.

5.3 ”Biased” Equations

Definition 5.3.1 (Biased). equations are the equations that after substitution
of y = 0 reduce to a affine equation of the xi ( type X).

Proposition 5.3.2. If there is ”enough” invariant equations, there exist ”enough”
biased equations.



Enough means the equal to the number of terms remaining after substitution
of y = 0. The proposition is trivial, we eliminate in a set of implicit equations
all the terms of {X∞ − X} before the substitution of y = 0. The important
point that biased equations may exist even if it is not guaranteed by the above
proposition. Our experiences in 5.6 has indeed shown they do.

Another important property of the biased equations is that they allow a
single round attack. The result of substitution of y = 0 are linear in the xi. The
drawback is that they are made for a single y value. The whole attack must be
re-iterated to compute several F−1(y) for different y.

Important: The ”biased” equations does not need to be computed com-
pletely in an attack. Only the coefficients of the terms in xi as well as constant
parts are needed (!)

5.4 The size of the Equations

We call size the number of terms of type xixjyk etc.. that are used in the type
of equations considered. The implicit equations attack requires huge quantities
of memory, because the length size of the equations is polynomial in n of degree
at least 3− 4, and the attack memory requirements are quadratic still in size.

We express size as a function of the number of input and output variables,
respectively na and nb. In [4] one can find a complete reference table that allows
to compute size values. For example, for fields of characteristic 2:

size
XY∪x2y∪xy2∪x3y∪x2y2 =

7
12

nanb+
1
4
(nan2

b−n2
anb+n2

an2
b)+

1
6
n3

anb+na+nb+1.

5.5 Trivial Equations

Since the yi are quadratic, therefore we have nb equations of the type [1 ∪ x ∪
x2 ∪ y]. All the equations that are the consequence of these equations are called
trivial. In practice, when na is bigger than some initial threshold, the number of
trivial equations is always the number that we get when we pick all quadratic
equations at random. Example:

In [XY ∪ x2] there are n trivial equations, the same as in [1 ∪ x ∪ x2 ∪ y].
Trivial equations, though they mix with ”non-trivial’ equations” used in

cryptanalysis, are predictable and harmless. When the yi values substituted to
the linear mix of the non-trivial and trivial equations, we eliminate the interfer-
ence as trivial equations always reduce to 0.

The exact number trivialtype of trivial equations is not obvious to compute.
Those that come from the interaction of different components of the ’type’ ex-
pression, may overlap and thus type 7→ trivialtype is not an additive function.
In [4] we compute trivialtype for all the equation types we consider.

5.6 Results

In the following table on page 8, we show the number of equations of different
types found for basic HFE. We did much more such computations in [4].



Table 1. Non-trivial equations found for basic HFE

n=21 Equation type

d XY XY ∪ x2y XY ∪ x2y ∪
xy2

X2Y X2Y ∪ XY 2

∪X3
XY ∪ x2y ∪
xy2 ∪ x3y ∪
x2y2

3 42→ 19 693→ 19 1995→ 19 882→ 210 2688→ 484 ...

4 21→ 21 441→ 21 1995→ 21 630→ 210 2688→ 484 ...

5 1→ 1 232→ 18 1177→ 18 357→ 144 1806→ 484 ...

8 1→ 1 170→ 20 1094→ 20 336→ 184 1764→ 484 ...

9 0→ 0 126→ 18 672→ 18 231→ 124 1134→ 337 ...

16 0→ 0 43→ 20 568→ 20 168→ 144 1092→ 379 ...

17 0→ 0 0→ 0 63→ 16 84→ 84 357→ 169 ...

24 0→ 0 0→ 0 22→ 18 84→ 84 315→ 311 ...

32 0→ 0 0→ 0 0→ 0 64→ 64 315→ 315 ...

33 0→ 0 0→ 0 0→ 0 0→ 0 147→ 147 ...

64 0→ 0 0→ 0 0→ 0 0→ 0 147→ 147 4739→ 20

65 0→ 0 0→ 0 0→ 0 0→ 0 42→ 42 1911→ 17

96 0→ 0 0→ 0 0→ 0 0→ 0 42→ 42 1638→ 21

128 0→ 0 0→ 0 0→ 0 0→ 0 42→ 42 1547→ 20

129 0→ 0 0→ 0 0→ 0 0→ 0 0→ 0 0→ 0

Legend:

We write the equation number found as A → B with:

A is the number of non-trivial equations found, which means we have subtracted the
number of trivial equations. This convention allows, at least as long as n is not too
small, to have 0 at places where HFE behaves exactly as a random multivariate
quadratic function (MQ).

B Is the number of the above equations that remain linearly independent after sub-
stitution of a randomly chosen y value. We apply an analogous convention for the
origin, trivial equations are subtracted.

The memory needed to do these computations was up to 1.2 Gbyte and for this reason
we had to skip some irrelevant cases.

Interpretation in terms of security:

If we get somewhere more that 0 equations, it is a weakness, but not necessarily a
working attack.
The only HFE that can pretend to be secure, should give 0 non-trivial equations for
all the types we can compute within realistic memory limits.



5.7 Interpretation of the Results

In the computations on page 7 more and more complex equations exist when
d increases. In [4] we consider many more different equation types and other
q 6= 2.. The subtypes of types [X lY ] prove the best because at constant size,
their degree in x is smaller.

We observed that the degrees d = qk + 1..qk+1 behave almost the same way
and that the number of non-trivial equations found behaves asO(nα(dlogq de, type)
with a constant α(dlogq de, type). We postulate that:

Conjecture 5.7.1. A basic HFE (or the HFE problem) of degree d admits O(n)
equations of type [X ∪ x2y ∪ . . . ∪ x

1
2 dlogq de−1y].

In a later attack we will ”cast’ these equations over a smaller subspace, but we
will see in the section 6 that we can only recover them starting from a threshold
na = nart(n, type), a threshold memory (usually in Terabytes) and a threshold
computing power. It means that today’s computers are not powerful enough to
find what happens for the equations more complex that the one we have already
studied (!)

5.8 The Complexity of the Attacks

The memory used in the attack is quadratic in size and is equal to size2/8 bytes.
In terms of speed, the essential element of all the attacks is the Gaussian

elimination. Though better algorithms exist in theory, [3], they are not practical.
We have implemented a trivial algorithm in O(size3). A structured version of
it can go as fast as CPU clock while working on a huge matrix on the disk (!).
Assuming that a 64-bit XOR in done in one clock cycle, we estimate that the
structured elimination takes 2 · size3/64 CPU clocks.

5.9 Realistic HFE Attacks when d ≤ 24

We see in 5.6 that for d <= 24 equations of type XY ∪ x2y ∪ xy2 give between
O(n) and O(n2) equations, enough to break basic HFE. For example we consider
an attack for n = 64 bits HFE with the degree d ≤ 24:

sizeXY ∪x2y∪xy2(64, 64) = O(n3) (3)

The precise computation yields size = 262 273 and thus the memory required
in the attack is size2/8 = O(n6) = 8 Gb. The running time is 2 · size3/64 ≈ 248

CPU clocks, few days on a PC, and it is not our best attack yet.
Thus basic HFE is not secure for d ≤ 24. The asymptotic complexity is at

most O(n9).



5.10 Direct Attack on Challenge 1

Now we try to use the equations of type XY ∪ x2y ∪ xy2 ∪ x3y ∪ x2y2 to break
this degree 96 basic HFE. We have

sizeXY ∪x2y∪xy2∪x3y∪x2y2(80, 80) = 17 070 561 (4)

The memory required is not realistic: size2/8 = 33 Terabytes. The running
time is 2 · size3/64 ≈ 262 CPU clocks.

6 Advanced Attacks

6.1 Reconciliation Technique

Since the main problem of the attacks is the size of the equations, it is a very
good idea to compute these equations only partly. We fix to zero all xi except na

of them. We call ”cast” equations the equations we get from the initial equations.
Unfortunately if na is too small, there are some more equations that we call

”artificial” equations. We show that the ”cast” equations of trivial equations are
trivial and the ”cast” equations of artificial equations are artificial. In [4] we have
managed to predict the number of artificial equations with a great accuracy.

For example, if n = nb = 80 we computed:

nart(XY ∪ x2y ∪ xy2 ∪ x3y ∪ x2y2) = 38 (5)

It means that the ”cast” (and ”non-trivial”) equations are known modulo a
linear combination of some ”interference” equations (artificial equations), that
make the resulting mix unusable for na < 38.

The reconciliation attack works before the threshold when artificial equa-
tion arise. The necessary condition is thus na ≥ nart.

Moreover the equations are recovered modulo a linear combination, and we
need to, make sure that it is possible to generate ”cast” equations, such that
their intersections are big enough to recover uniquely their corresponding linear
combinations. This leads to an additional condition.

Thus we will recover the equations from different ”casts”. In fact we do not
exactly recover the whole equations but only a part of them that contains firstly
enough terms to combine different casts, and secondly their constant coefficients
and coefficients in xi, as only those are necessary to compute x and break HFE.
.

6.2 The Distillation Technique

In the distillation attack we show that there is another, strictly lower thresh-
old, and HFE can be broken in spite of the ”interference” equations. The idea is
very simple, the artificial equations alone doesn’t have any sense with relation
to initial (huge) equations and can be eliminated from different ”casts’.

In [4] we show that if the following distillation condition is true:



artificial(na − 1, nb) ≥ artificial(na, nb). (6)

then a successful attack can be lead.

6.3 Distillation Attack on Challenge 1

For nb = 80 and type XY ∪ x2y ∪ xy2 ∪ x3y ∪ x2y2, the solution for the distil-
lation condition above is computed in [4] to be na ≥ 30.

The working size of the attack is:

sizeXY ∪x2y∪xy2∪x3y∪x2y2(30, 80) = 1 831 511. (7)

We need only size2/8 = 390 Gb of memory instead of 33 Tb in the direct
attack of section 5.10. Following [4], the running time is computed as (80− 30+
1) · 2 · size3/64 ≈ 262 CPU clocks.

6.4 Sparse methods

In the attacks above, we have to solve systems of several million equations with
several million variables. Such equations could be sparse, if we try to recover
them in a slightly different way. We build a matrix with columns corresponding
to each component of the equation, for example y1y4 or x2y55y9. Each line of
the equation will correspond to a term, for example x3x5x7x16. We only need to
consider about as many terms as size, (there is much much more) though sparse
methods [Lanczos, Wiedemann] could take advantage if we generated more.

Such a system of equations is sparse, for example the column x2y55y9 contains
non-zero coefficients only for terms containing x2, therefore for about 1/n of all
terms.

In [12] we hear that with size = 1.3M (million), a system over GF (2) could
be solved in few hours on one processor of CrayC90 using modified Lanczos al-
gorithm. Their system had only 39M non-zero coefficients, i.e. about 1/40000
of them. Assuming that sparse methods would combine with reconciliation and
distillation, for our systems of size = 1.8M we have about 1/80 non-zero coeffi-
cients, much more.

Thus it is unclear if any of the aforementioned sparse methods could improve
on the attack.

7 Asymptotic Security of basic HFE

First, if d is fixed, we have found in 5.6 an experimental evidence that basic
HFE can be broken in expected polynomial time. The same result has just been
independently shown by Shamir and Kipnis at Crypto’99, see [23].

Our attack in a basic version based on conclusions form 5.7 (no reconciliation,
no distillation) gives about:



size ≈ n
1
2 logq d. (8)

In [4] we show that the distillation attack gives roughly:

size ≈ n
(√

n
) 1

2 logq d ≈ n
1
4 logq d. (9)

We retain a conservative approximation:

size ≤ n
1
2 logq d. (10)

7.1 Results

Therefore the security of basic HFE is not better than:

security ≤ n
3
2 logq d. (11)

If the distillation attack works as well as estimated in [4], it would give even:

security ≤ n
3
4 logq d. (12)

First, we compare it to the secret key operations of HFE. It requires to
factorise the degree d polynomial P over a finite field. The asymptotically fastest
known algorithm to solve a polynomial equation P over a finite field of von zur
Gathen and Shoup [8] requires about d2(logq d)O(1)n2 operations. At any rate
we need d = nO(1) to enable secret key computations [14]. Thus:

security ≤ nO(logq n) ≈ e(log2
q n). (13)

In [4] it has been shown that the complexity of Shamir-Kipnis attack is rather
in nO(log2

q d) which gives eO(log3
q n). We are going to improve it to get a similar

result.

8 Shamir-Kipnis Attack Revisited

The starting point here is the Shamir-Kipnis attack for basic HFE, [23] that we
do not describe due to lack of space. It shows there exist t0, . . . , tn−1 ∈ GF (qn)
such that the rank of

G′ =
n−1∑
i=0

tkG∗k (14)

collapses to at most r = 1 + dlogq de, with G∗k being n public matrices n × n
over GF (qn).

The underlying problem we are solving is called MinRank [6]. Shamir and
Kipnis solved it by what is called ’relinearization’, see [21] for improvements on
it. We do not use it, and instead we solve MinRank directly. Our method is
identical as previously used by Coppersmith, Stern and Vaudenay in [1, 2].



We write equations in the t0, . . . , tn−1 saying that every (r + 1)x(r + 1)
submatrix has determinant 0. Each submatrix gives a degree (r + 1) equation
on the t0, . . . , tn−1 over GF (qn). There are as much as

(
n

r+1

)2 such equations
and we hope that at least about

(
n

r+1

)
of them are linearly independent. We get

about
(

n
r+1

)
equations which have

(
n

r+1

)
terms, and are simply linearized and

solved by Gaussian reduction.
The size of the equations to solve is

size ≈
(

n

r + 1

)
≈ nr+O(1) ≈ nlogq d+O(1), (15)

which gives similar results as our attacks:

security ≤ nO(logq d). (16)

9 Is basic HFE likely to be polynomial ?

The MinRank is an NP-complete problem for e.g. r = n − 1 [24, 6]. It seems
therefore unlikely that our attack for MinRank in nO(r) could ever be improved
to remain polynomially bounded when r grows.

The same remark applies to our equational attacks. When d grows, the HFE
problem (i.e. basic HFE) tends to the NP-complete MQ problem of solving ran-
dom quadratic equations, see [14, 15, 4].

10 Conclusion

The best known HFE attack is our distillation attack for basic HFE. It’s not
proven to work for d >> 129 but relies on an extensive experimental evidence.
we have also the Shamir-Kipnis attack, and rather our improved version of it,
that though worse in practice comes with a proof [23].

They both give the complexities in nO(logq d) to break the basic HFE version.
It is polynomial when d is fixed and subexponential in general. Both presented
attacks on HFE are much better that any previously known.

Even with the significant progress we have made, the attacks still have the
complexity and memory requirements that can quickly go out-of-range. Though
it is certain that attacks will be improved in the future, HFE can be considered
secure for d > 128 and n > 80.

Perspectives

The basic version of HFE is broken for the initially proposed degree d ≥ 17 [14]
and even for d ≥ 24. Our attacks has been tested to work for d ≤ 128, and thus
the HFE Challenge 1 is broken in 262.



HFE modifications that resist to all known attacks.

Several HFE problem-based cryptosystems avoid all the attacks described in the
present paper. We verified that our attacks rapidly collapse for these schemes:

HFE−: It is a basic HFE with several public equations removed, see [16].
HFEv: Described in a paper presented at Eurocrypt’99, [17]. It consists of

adding new variables to HFE, as in the Oil and Vinegar algorithm partially
broken at Crypto’98 [22].

HFEv-: Combines both above ideas. There are many other variants of HFE
proposed by Jacques Patarin in the extended version of [14] and in [15, 18].

Quartz: Presented at RSA’2000 [19] and submitted to the european Nessie call
for primitives. An unique 128-bit long signature scheme, based on HFEv-,
designed for long-term security. Our best attack applied to the basic HFE
subsystem of Quartz, with d = 129 and n = 103, gives about 2114. However
it does not apply at all to the whole Quartz.

Flash, Sflash Also at RSA’2000 [20] and submitted to Nessie. A signature
scheme based on C∗−, designed for speed. The security is an open prob-
lem.
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11 Common Terms and Notations

about equations: We consider multivariate equations over GF (q), usually with
q = 2. na/nb are the numbers of input/output variables xi/yi. We note
sizetype(na, nb) the length of equations of a given ”type”. The ”type” is
specified by a convention using expressions in variables x, y,X, Y detailed in
the section 5.1.

artificial∗ equations are due to the small dimension na of the x sub-space and
the small degree of yi expressions. They become visible if they are more
that trivial+non-trivial equations. Their number artificialtype(na, nb) can
be correctly computed and does not depend on the HFE degree.

biased equations - for one particular value y = 0 they become affine in xi.

boosting - general notion of an operation that starting with some equations on
the unknowns, finds some other equations on them that are not trivial (e.g.
linear) combinations of the initial equations.

cast∗ equations are non-trivial equations with some xi fixed to 0, usually for
i = na + 1, . . . , n.

distillation - eliminating artificial ”interference” equations between different
casts of the same equation, see 6.1-6.3.

HFE stands for the Hidden Field Equations cryptosystem [14]. P denotes the
hidden univariate HFE polynomial over GF (qn). S and T are affine multi-
variate bijective variable changes over GF (q) and F = T ◦ P ◦ S.

interference∗ equations - any complementary space of cast equations in artifi-
cial equations.

invariant equations - equations that are still of the same type after an affine
variable change because their set of terms is invariant.

non-trivial∗ equations - any complementary space of trivial equations found
implicitly by Gaussian reduction. The implicit equations we are able to re-
cover must be of small degree in both the yi and xi. An implicit equation in
the xi and yi may be viewed as a point such that, an expression in the yi

and xi, re-written as as a polynomial in xi, has unusually small degree.
For cryptanalysis we look for equations that have small degree in the xi

after substitution of one value y (or all possible y). The equations mixed
with trivial equations are still useful for cryptanalysis. Their existence is a
definite weakness of any one-way function candidate.

reconciliation - recomposing different ”casts” of the same equations, see 6.1.

trivial equations - explicit small degree combinations of given equations and
the variables that are due to the quadratic character of yi. Their number is
trivialtype(na, nb).

∗ - informal categories, doesn’t make sense for equations regardless how they
have been computed.


